Advertisement

Solar Physics

, Volume 256, Issue 1–2, pp 167–181 | Cite as

Geometric Localization of CMEs in 3D Space Using STEREO Beacon Data: First Results

  • Curt A. de KoningEmail author
  • V. J. Pizzo
  • D. A. Biesecker
STEREO SCIENCE RESULTS AT SOLAR MINIMUM

Abstract

The geometric localization technique (Pizzo and Biesecker, Geophys. Res. Lett. 31, 21802, 2004) can readily be used with Solar Terrestrial Relations Observatory (STEREO) Space Weather Beacon data to observe coronal mass ejection (CME) propagation within three-dimensional space in near-real time. This technique is based upon simple triangulation concepts and utilizes a series of lines of sight from two space-based observatories to determine gross characteristics of CMEs, such as location and velocity. Since this work is aimed at space weather applications, the emphasis is on use of COR2 coronagraph data, which has a field of view from 2.5R to 15R ; this spatial coverage allows us to observe the early temporal development of a CME, and hence to calculate its velocity, even for very fast CMEs. We apply this technique to highly-compressed COR2 beacon images for several CMEs at various spacecraft separation angles: 21 August 2007, when the separation angle between the two spacecraft was 26°; 31 December 2007 and 2 January 2008, when the separation angle was 44°; and 17 October 2008, when the spacecraft separation was 79°. We present results on the speed and direction of propagation for these events and discuss the error associated with this technique. We also compare our results to the two-dimensional plane-of-sky speeds calculated from STEREO and SOHO.

Keywords

Coronal Mass Ejection Space Weather Separation Angle Geometric Localization Stereo Spacecraft 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Antunes, A., Thernisien, A., Yahil, A.: 2009, Hybrid reconstruction to derive 3D height-time evolution for Coronal Mass Ejections. Solar Phys. submitted. Google Scholar
  2. Biesecker, D.A., Webb, D.F., St. Cyr, O.C.: 2008, STEREO space weather and the space weather beacon. Space Sci. Rev. 136, 65. doi: 10.1007/s11214-007-9165-7. ADSGoogle Scholar
  3. Brueckner, G.E., Howard, R.A., Koomen, M.J., Korendyke, C.M., Michels, D.J., Moses, J.D., Socker, D.G., Dere, K.P., Lamy, P.L., Llebaria, A., Bout, M.V., Schwenn, R., Simnett, G.M., Bedford, D.K., Eyles, C.J.: 1995, The Large Angle Spectroscopic Coronagraph (LASCO). Solar Phys. 162, 402. CrossRefGoogle Scholar
  4. Domingo, V., Fleck, B., Poland, A.I.: 1995, The SOHO mission: an overview. Solar Phys. 162, 37. CrossRefGoogle Scholar
  5. Driesman, A., Hynes, S., Cancro, G.: 2008, The STEREO observatory. Space Sci. Rev. 136, 44. doi: 10.1007/s11214-007-9286-z. Google Scholar
  6. Eichstedt, J., Thompson, W.T., St. Cyr, O.C.: 2008, STEREO ground segment, science operations, and data archive. Space Sci. Rev. 136, 626. doi: 10.1007/s11214-007-9249-4. CrossRefGoogle Scholar
  7. Gosling, J.T.: 1990, Coronal mass ejections and magnetic flux ropes in interplanetary space. In: Russel, C.T., Priest, E.R., Lee, L.C. (eds.) Physics of Magnetic Flux Ropes, Geophysical Monograph Series 58, AGU, Washington, 364. Google Scholar
  8. Howard, R.A., Moses, J.D., Vourlidas, A., Newmark, J.S., Socker, D.G., Plunkett, S.P., Korendyke, C.M., Cook, J.W., Hurley, A., Davila, J.M., Thompson, W.T., St. Cyr, O.C., Mentzell, E., Mehalick, K., Lemen, J.R., Wuelser, J.P., Duncan, D.W., Tarbell, T.D., Wolfson, C.J., Moore, A., Harrison, R.A., Waltham, N.R., Lang, J., Davis, C.J., Eyles, C.J., Mapson-Menard, H., Simnett, G.M., Halain, J.P., Defise, J.M., Mazy, E., Rochus, P., Mercier, R., Ravet, M.F., Delmotte, F., Auchère, F., Delaboudinière, J.P., Bothmer, V., Deutsch, W., Wang, D., Rich, N., Cooper, S., Stephens, V., Maahs, G., Baugh, R., McMullin, D., Carter, T.: 2008, Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI). Space Sci. Rev. 136, 115. doi: 10.1007/s11214-008-9341-4. Google Scholar
  9. Kaiser, M.L., Kucera, T.A., Davila, J.M., St. Cyr, O.C., Guhathakurta, M., Christian, E.: 2008, The STEREO mission: an introduction. Space Sci. Rev. 136, 16. doi: 10.1007/s11214-007-9277-0. Google Scholar
  10. Moran, T.G., Davila, J.M.: 2004, Three-dimensional polarimetric imaging of coronal mass ejections. Science 305, 70. CrossRefADSGoogle Scholar
  11. Olmedo, O., Zhang, J., Wechsler, H., Poland, A., Borne, K.: 2008, Automatic detection and tracking of coronal mass ejections in coronagraph time series. Solar Phys. 248, 499. doi: 10.1007/s11207-007-9104-5. CrossRefGoogle Scholar
  12. Pizzo, V.J., Biesecker, D.A.: 2004, Geometric localization of STEREO CMEs. Geophys. Res. Lett. 31. doi: 10.1029/2004GL021141.
  13. Robbrecht, E., Berghmans, D.: 2004, Automated recognition of coronal mass ejections (CMES) in near-real-time data. Astron. Astrophys. 425, 1106. doi: 10.1051/0004-6361:20041302. ADSGoogle Scholar
  14. Thernisien, A.F.R., Howard, R.A., Vourlidas, A.: 2006, Modeling of flux rope coronal mass ejections. Astrophys. J. 652, 773. CrossRefADSGoogle Scholar
  15. Thompson, W.T.: 2006, Coordinate systems for solar image data. Astron. Astrophys. 449, 803. doi: 10.1051/0004-6361:20054262. Google Scholar
  16. Yashiro, S., Gopalswamy, N., Michalek, G., St.Cyr, O.C., Plunkett, S.P., Rich, N.B., Howard, R.A.: 2004, A catalog of white light coronal mass ejections observed by the SOHO spacecraft. J. Geophys. Res. 109 A07105. doi: 10.1029/2003JA010282. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Curt A. de Koning
    • 1
    • 2
    Email author
  • V. J. Pizzo
    • 2
  • D. A. Biesecker
    • 2
  1. 1.Cooperative Institute for Research in Environmental SciencesUniversity of ColoradoBoulderUSA
  2. 2.NOAA/Space Weather Prediction CenterBoulderUSA

Personalised recommendations