Advertisement

Solar Physics

, Volume 256, Issue 1–2, pp 73–85 | Cite as

3D Temperatures and Densities of the Solar Corona via Multi-Spacecraft EUV Tomography: Analysis of Prominence Cavities

  • Alberto M. Vásquez
  • Richard A. FrazinEmail author
  • Farzad Kamalabadi
STEREO SCIENCE RESULTS AT SOLAR MINIMUM

Abstract

Three-dimensional (3D) tomographic analysis of extreme ultraviolet (EUV) images is used to place empirical constraints on the corona’s temperature and density structure. The input data are images taken by the EUVI instrument on STEREO A and B spacecraft for Carrington Rotation 2069 (16 April to 13 May 2008). While the reconstructions are global, we demonstrate the capabilities of this method by examining specific structures in detail. Of particular importance are the results for coronal cavities and the surrounding helmet streamers, which our method allows to be analyzed without projection effects for the first time. During this rotation, both the northern and southern hemispheres exhibited stable polar crown filaments with overlying EUV cavities. These filaments and cavities were too low-lying to be well observed in white-light coronagraphs. Furthermore, due to projection effects, these cavities were not clearly discernible above the limb in EUV images, thus tomography offers the only option to study their plasma properties quantitatively. It is shown that, when compared to the surrounding helmet material, these cavities have lower densities (about 30%, on average) and broader local differential emission measures that are shifted to higher temperatures than the surrounding streamer plasma.

Keywords

Solar corona Filaments Coronal cavities Tomography Differential emission measure Electron density EUV imaging STEREO mission 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

Below is the link to the electronic supplementary material. (MOV 8,731 kb)

References

  1. An, C.-H., Suess, S.T., Tandberg-Hanssen, E.: 1985, Solar Phys. 102, 165. CrossRefADSGoogle Scholar
  2. Arnaud, M., Raymond, J.C.: 1992, Astrophys. J. 398, 39. CrossRefADSGoogle Scholar
  3. Aschwanden, M.J.: 2004, Physics of the Solar Corona: An Introduction, Praxis Publishing Ltd, Chichester. Google Scholar
  4. Aschwanden, M.J., Nightingale, R.W., Boerner, P.: 2007, Astrophys. J. 656, 577. CrossRefADSGoogle Scholar
  5. Aschwanden, M.J., Nitta, N.V., Wülser, J.P., Lemen, J.R.: 2008, Astrophys. J. 679, 827. CrossRefADSGoogle Scholar
  6. Babcock, H.W., Babcock, H.D.: 1955, Astrophys. J. 121, 349. CrossRefADSGoogle Scholar
  7. Barbey, N., Auchère, F., Rodet, T., Vial, J.-C.: 2008, Solar Phys. 248, 409. CrossRefADSGoogle Scholar
  8. Butala, M.D., Kamalabadi, F., Frazin, R.A., Chen, Y.: 2008, IEEE J. Sel. Top. Signal Process. 2, 75. CrossRefGoogle Scholar
  9. Craig, I.J.D., Brown, J.C.: 1986, Inverse Problems in Astronomy, Hilger, Bristol. zbMATHGoogle Scholar
  10. Demoment, G.: 1989, IEEE Trans. Acoust. Speech Signal Process. 7(2), 204. MathSciNetGoogle Scholar
  11. Feldman, U., Mandelbaum, P., Seely, J.L., Doschek, G.A., Gursky, H.: 1992, Astrophys. J. Suppl. Ser. 81, 387. CrossRefADSGoogle Scholar
  12. Feng, L., Inhester, B., Solanki, S.K., Wiegelmann, T., Podipnik, B., Howard, R.A., Wülser, J.-P.: 2007, Astrophys. J. 671, L205. CrossRefADSGoogle Scholar
  13. Frazin, R.A., Janzen, P.: 2002, Astrophys. J. 570, 408. CrossRefADSGoogle Scholar
  14. Frazin, R.A., Kamalabadi, F.: 2005, Solar Phys. 228, 21. CrossRefGoogle Scholar
  15. Frazin, R.A., Kamalabadi, F., Weber, M.A.: 2005, Astrophys. J. 628, 1070. CrossRefADSGoogle Scholar
  16. Frazin, R.A., Butala, M.D., Kemball, A., Kamalabadi, F.: 2005, Astrophys. J. 635, L197. CrossRefADSGoogle Scholar
  17. Frazin, R.A., Vásquez, A.M., Kamalabadi, F., Park, H.: 2007, Astrophys. J. 671, L201. CrossRefADSGoogle Scholar
  18. Fuller, J., Gibson, S.E., de Toma, G., Fan, Y.: 2008, Astrophys. J. 678, 515. CrossRefADSGoogle Scholar
  19. Gibson, S.E., Foster, D., Burkepile, J., de Toma, G., Stanger, A.: 2006, Astrophys. J. 641, 590. CrossRefADSGoogle Scholar
  20. Gissot, S.F., Hochedez, J.-F., Chainais, P., Antoine, J.-P.: 2008, Solar Phys. 252, 397. CrossRefADSGoogle Scholar
  21. Golub, G.H., Health, M., Wahba, G.: 1979, Technometrics 21(2), 215. zbMATHCrossRefMathSciNetGoogle Scholar
  22. Grevesse, N., Sauval, A.J.: 1998, Space Sci. Rev. 85, 16. CrossRefGoogle Scholar
  23. Howard, R.A., Moses, J.D., Vourlidas, A., Newmark, J.S., Socker, D.G., Plunkett, S.P., et al.: 2008, Space Sci. Rev. 136, 67. CrossRefADSGoogle Scholar
  24. Hudson, H.S., Acton, L.W., Harvey, K.L., McKenzie, D.E.: 1999, Astrophys. J. 513, L83. CrossRefADSGoogle Scholar
  25. Illing, R.M.E., Hundhausen, A.J.: 1985, J. Geophys. Res. 90, 275. CrossRefADSGoogle Scholar
  26. Kaiser, M.L., Kucera, T.A., Davila, J.M., St. Cyr, O.C., Guhathakurta, M., Christian, E.: 2008, Space Sci. Rev. 136, 5. CrossRefADSGoogle Scholar
  27. Marqué, C.: 2004, Astrophys. J. 602, 1037. CrossRefADSGoogle Scholar
  28. Mihalas, D.: 1978, Stellar Atmospheres, Freeman, New York. Google Scholar
  29. Pneuman, G.W.: 1972, Solar Phys. 177, 793. Google Scholar
  30. Raymond, J.C., Kohl, J.L., Noci, G., Antonucci, E., Tondello, G., Huker, M.C.E., et al.: 1997, Solar Phys. 175, 64. CrossRefGoogle Scholar
  31. Schmelz, J.T., Kashyap, V.L., Weber, M.A.: 2007, Astrophys. J. 660, L157. CrossRefADSGoogle Scholar
  32. Schrijver, C.J., McMullen, R.A.: 2000, Astrophys. J. 531, 1121. CrossRefADSGoogle Scholar
  33. Schrijver, C.J., van den Oord, G.H.J., Mewe, R.: 1994, Astron. Astrophys. 289, L23. ADSGoogle Scholar
  34. St. Cyr, O.C., Webb, D.F.: 1991, Solar Phys. 136, 379. CrossRefADSGoogle Scholar
  35. Vaiana, G.S., Krieger, A.S., Timothy, A.F.: 1973, Solar Phys. 32, 81. CrossRefADSGoogle Scholar
  36. Vásquez, A.M., Raymond, J.C.: 2005, Astrophys. J. 619, 1132. CrossRefADSGoogle Scholar
  37. Weber, M.A., Deluca, E.E., Golub, L., Sette, A.L.: 2004, In: Stepanov, A.V., Benevolenskaya, E.E., Kosovichev, A.G. (eds.) Multi-Wavelength Investigations of Solar Activity, Proc. IAU Symp. 223, Cambridge University Press, Cambridge, 321. Google Scholar
  38. Wolfson, R., Saran, S.: 1998, Astrophys. J. 499, 496. CrossRefADSGoogle Scholar
  39. Young, P.R., Del Zanna, G., Landi, E., Dere, K.P., Mason, H.E., Landini, M.: 2003, Astrophys. J. Suppl. Ser. 144, 135. CrossRefADSGoogle Scholar
  40. Zhang, J., White, S.M., Kundu, M.R.: 1999, Astrophys. J. 527, 977. CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Alberto M. Vásquez
    • 1
  • Richard A. Frazin
    • 2
    Email author
  • Farzad Kamalabadi
    • 3
  1. 1.Instituto de Astronomía y Física del EspacioCONICET – University of Buenos AiresCiudad de Buenos AiresArgentina
  2. 2.Dept. of Atmospheric, Oceanic and Space SciencesUniversity of MichiganAnn ArborUSA
  3. 3.Dept. of Electrical and Computer EngineeringUniversity of IllinoisUrbanaUSA

Personalised recommendations