Solar Physics

, Volume 255, Issue 1, pp 3–38 | Cite as

Modeling a Shallow Solar Dynamo

Article

Abstract

Photospheric ephemeral regions (EPRs) cover the Sun like a magnetic carpet. From this, we update the Babcock – Leighton solar dynamo. Rather than sunspot fields appearing in the photosphere de novo from eruptions originating in the deep interior, we consider that sunspots form directly in the photosphere by a rapid accumulation of like-sign field from EPRs. This would only occur during special circumstances: locations and times when the temperature structure is highly superadiabatic and contains a large subsurface horizontal magnetic field (only present in the Sun’s lower latitudes). When these conditions are met, superadiabatic percolation occurs, wherein an inflow and downflow of gas scours the surface of EPRs to form active regions. When these conditions are not met, magnetic elements undergo normal percolation, wherein magnetic elements move about the photosphere in Brownian-type motions. Cellular automata (CA) models are developed that allow these processes to be calculated and thereby both small-scale and large-scale models of magnetic motions can be obtained. The small-scale model is compared with active region development and Hinode observations. The large-scale CA model offers a solar dynamo, which suggests that fields from decaying bipolar magnetic regions (BMRs) drift on the photosphere driven by subsurface magnetic forces. These models are related to observations and are shown to support Waldmeier’s findings of an inverse relationship between solar cycle length and cycle size. Evidence for significant amounts of deep magnetic activity could disprove the model presented here, but recent helioseismic observations of “butterfly patterns” at depth are likely just a reflection of surface activity. Their existence seems to support the contention made here that the field and flow separate, allowing cool, relatively field-free downdrafts to descend with little field into the nether worlds of the solar interior. There they heat by compression to form a hot solar-type Santa Ana wind deep below active regions.

Keywords

Solar dynamo Solar magnetism Sunspots Solar activity Dynamo Percolation Superadiabatic Hinode 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Babcock, H.W.: 1961, Astrophys. J. 133, 572. CrossRefADSGoogle Scholar
  2. Brandenburg, A.: 2005, Astrophys. J. 625, 539. CrossRefADSGoogle Scholar
  3. Bumba, V., Howard, R.F.: 1965, Astrophys. J. 141, 1502. CrossRefADSGoogle Scholar
  4. Cox, J.P., Giuli, R.T.: 1968, Principles of Stellar Structure, Gordon & Breach, New York. Google Scholar
  5. Fragos, T., Rantsiou, E., Vlahos, L.: 2004, Astron. Astrophys. 420, 719. CrossRefADSGoogle Scholar
  6. Gardner, M.: 1970, Sci. Am. 223, 120. CrossRefGoogle Scholar
  7. González Hernández, I., Kholikov, S., Hill, F., Howe, R., Komm, R.: 2008, Solar Phys. 252, 221. CrossRefGoogle Scholar
  8. Hale, G.E., Ellerman, F., Nicholson, S.B., Joy, A.H.: 1918, Astrophys. J. 49, 153. CrossRefADSGoogle Scholar
  9. Ising, E.: 1925, Z. Phys. 31, 253. ADSGoogle Scholar
  10. Jackson, J.D.: 1962, Classical Electrodynamics, 2nd edn., Wiley, New York, 12. Google Scholar
  11. Kitchatinov, L.L., Mazure, M.V.: 2000, Solar Phys. 191(2), 325. CrossRefADSGoogle Scholar
  12. Lean, J.L., Cook, J., Marquette, W., Johannesson, A.: 1998, Astrophys. J. 492, 390. CrossRefADSGoogle Scholar
  13. Leighton, R.B.: 1964, Astrophys. J. 140, 1547L. CrossRefADSGoogle Scholar
  14. Leighton, R.B.: 1969, Astrophys. J. 156, 1L. CrossRefADSGoogle Scholar
  15. Mihalas, D.: 1970, Stellar Atmospheres, Freeman, San Francisco. Google Scholar
  16. Müller, H.W., Büchl, K., Kaufmann, M., Lang, P.T., Lang, R.S., Lorenz, A., et al.: 1999, Phys. Rev. Lett. 83(11), 2199. CrossRefADSGoogle Scholar
  17. Nordlund, Å., Brandenburg, A., Jennings, R.L., Rieutord, M., Ruokolainen, J., Stein, R.F., Tuominen, I.: 1992, Astrophys. J. 392, 647 – 652. CrossRefADSGoogle Scholar
  18. Parker, E.N.: 1978, Astrophys. J. 221, 368. CrossRefADSGoogle Scholar
  19. Parker, E.N.: 1979, Astrophys. J. 232, 291. CrossRefADSGoogle Scholar
  20. Parker, E.N.: 1984, Astrophys. J. 283, 343. CrossRefADSGoogle Scholar
  21. Parnell, C.: 2002, Astron. Geophys. 43(4), 4.16. CrossRefGoogle Scholar
  22. Schatten, K.H.: 1988, Astrophys. J. 329, 1028. CrossRefADSGoogle Scholar
  23. Schatten, K.: 2005, Geophys. Res. Lett. 32, L21106. CrossRefADSGoogle Scholar
  24. Schatten, K.H.: 2007, Astrophys. J. Suppl. 169, 137. CrossRefADSGoogle Scholar
  25. Schatten, K.H., Mayr, H.G.: 1985, Astrophys. J. 299, 1051. CrossRefADSGoogle Scholar
  26. Schatten, K.H., Leighton, R.B., Howard, R., Wilcox, J.M.: 1972, Solar Phys. 26, 283. CrossRefADSGoogle Scholar
  27. Schatten, K.H., Mayr, H.G., Omidvar, K., Maier, E.: 1986, Astrophys. J. 311, 460. CrossRefADSGoogle Scholar
  28. Schrijver, C.J.: 2001, Astrophys. J. 547, 475. CrossRefADSGoogle Scholar
  29. Schrijver, C.J., Title, A.M.: 2001, Astrophys. J. 551, 1099. CrossRefADSGoogle Scholar
  30. Schrijver, C.J., DeRosa, M.L., Title, A.M.: 2002, Astrophys. J. 577, 1006. CrossRefADSGoogle Scholar
  31. Seiden, P.E., Wentzel, D.G.: 1996, Astrophys. J. 460, 522. CrossRefADSGoogle Scholar
  32. Sheeley, N.J., DeVore, C.R., Boris, J.P.: 1985, Solar Phys. 98, 219. CrossRefADSGoogle Scholar
  33. Sheeley, N.R. Jr., Nash, A.G., Wang, Y.-M.: 1987, Astrophys. J. 319, 481. CrossRefADSGoogle Scholar
  34. Stix, M.: 1974, Astron. Astrophys. 37, 121. ADSGoogle Scholar
  35. Svalgaard, L., Cliver, E.W.: 2007, Astrophys. J. 661, L203. CrossRefADSGoogle Scholar
  36. Svalgaard, L., Wilcox, J.M.: 1976, Solar Phys. 49, 177. CrossRefADSGoogle Scholar
  37. Ulrich, R., Boyden, J.: 2006, Solar Phys. 235(1 – 2), 17. CrossRefADSGoogle Scholar
  38. Waldmeier, M.: 1961, The Sunspot Activity in the Years 1610 – 1960, Zurich Schultess and Company, Zurich. Google Scholar
  39. Woodward, P., Porter, D., Anderson, S., Fuchs, T., Herwig, F.: 2006, J. Phys. 46, 370. MathSciNetGoogle Scholar
  40. Zwaan, C.: 1978, Solar Phys. 60, 213. CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.a.i. solutionsLanhamUSA

Personalised recommendations