Solar Physics

, Volume 254, Issue 2, pp 325–344 | Cite as

Multispacecraft Observations of Magnetic Clouds and Their Solar Origins between 19 and 23 May 2007

  • E. K. J. Kilpua
  • P. C. Liewer
  • C. Farrugia
  • J. G. Luhmann
  • C. Möstl
  • Y. Li
  • Y. Liu
  • B. J. Lynch
  • C. T. Russell
  • A. Vourlidas
  • M. H. Acuna
  • A. B. Galvin
  • D. Larson
  • J. A. Sauvaud
Open Access
Article

Abstract

We analyze a series of complex interplanetary events and their solar origins that occurred between 19 and 23 May 2007 using observations by the STEREO and Wind satellites. The analyses demonstrate the new opportunities offered by the STEREO multispacecraft configuration for diagnosing the structure of in situ events and relating them to their solar sources. The investigated period was characterized by two high-speed solar wind streams and magnetic clouds observed in the vicinity of the sector boundary. The observing satellites were separated by a longitudinal distance comparable to the typical radial extent of magnetic clouds at 1 AU (fraction of an AU), and, indeed, clear differences were evident in the records from these spacecraft. Two partial-halo coronal mass ejections (CMEs) were launched from the same active region less than a day apart, the first on 19 May and the second on 20 May 2007. The clear signatures of the magnetic cloud associated with the first CME were observed by STEREO B and Wind while only STEREO A recorded clear signatures of the magnetic cloud associated with the latter CME. Both magnetic clouds appeared to have interacted strongly with the ambient solar wind and the data showed evidence that they were a part of the coronal streamer belt. Wind and STEREO B also recorded a shocklike disturbance propagating inside a magnetic cloud that compressed the field and plasma at the cloud’s trailing portion. The results illustrate how distant multisatellite observations can reveal the complex structure of the extension of the coronal streamer into interplanetary space even during the solar activity minimum.

Keywords

Magnetic cloud Solar wind Coronal mass ejection Helmet streamer 

Supplementary material

Video file

Video file

References

  1. Cane, H.V., Richardson, I.G., St. Cyr, O.C.: 1998, The interplanetary events of January to May 1997, as inferred from energetic particle data, and their relationship with solar event. Geophys. Res. Lett. 25, 2571. Google Scholar
  2. Burlaga, L.: 1988, Magnetic clouds and force-free fields with constant alpha. J. Geophys. Res. 93, 7217. CrossRefADSGoogle Scholar
  3. Burlaga, L.F., Sittler, E., Mariani, F., Schwenn, R.: 1981, Magnetic loop behind an interplanetary shock. J. Geophys. Res. 86, 6673. CrossRefADSGoogle Scholar
  4. Collier, M.R., Lepping, R.P., Berdichevsky, D.B.: 2007, A statistical study of interplanetary shocks and pressure pulses internal to magnetic clouds. J. Geophys. Res. 112, A06102. doi:10.1029/2006JA011714. CrossRefGoogle Scholar
  5. Crooker, N.U., Intriligator, D.S.: 1996, A magnetic cloud as a distended flux rope occlusion in the heliospheric current sheet. J. Geophys. Res. 101, 24 343. ADSGoogle Scholar
  6. Crooker, N.U., Gosling, J.T., Kahler, S.W.: 1998, Magnetic clouds at sector boundaries. J. Geophys. Res. 103, 301. CrossRefADSGoogle Scholar
  7. Crooker, N.U., Siscoe, G.L., Shodan, S., Webb, D.F., Gosling, J.T., Smith, E.J.: 1993, Multiple heliospheric current sheets and coronal streamer belt dynamics. J. Geophys. Res. 98, 9371. CrossRefGoogle Scholar
  8. Fenrich, F.R., Luhmann, J.G.: 1998, Geomagnetic response to magnetic clouds of different polarity. Geophys. Res. Lett. 25, 2999. CrossRefADSGoogle Scholar
  9. Gopalswamy, N., Lara, A., Yashiro, S., Kaiser, M.L., Howard, R.A.: 2001, Predicting the 1-AU arrival times of coronal mass ejections. J. Geophys. Res. 106 (A12), 29 207. ADSGoogle Scholar
  10. Gosling, J.T., Birn, J., Hesse, M.: 1995, Three-dimensional magnetic reconnection and the magnetic topology of coronal mass ejection events. Geophys. Res. Lett. 22, 22 869. Google Scholar
  11. Gosling, J., Skoug, J.R., Feldman, W.: 2001, Solar wind electron halo depletions at 90° pitch angle. Geophys. Res. Lett. 28 (22), 4155. CrossRefADSGoogle Scholar
  12. Gosling, J.T., Borrini, G., Asbridge, J.R., Bame, S.J., Feldman, W.C., Hansen, R.T.: 1981, Coronal streamers in the solar wind at 1 AU. J. Geophys. Res. 86, 5438. CrossRefADSGoogle Scholar
  13. Green, L.M., Kliem, B, Török, T., van Driel-Gesztelyi, L., Attrill, G.D.R.: 2007, Transient coronal sigmoids and rotating erupting flux ropes. Solar Phys. 246, 365–391. CrossRefADSGoogle Scholar
  14. Harra, L.K., Crooker, N.U., Mandrini, C.H., van Driel-Gesztelyi, L., Dasso, S., Wang, J., Elliott, H., Attrill, G., Jackson, B.V., Bisi, M.M.: 2007, How does large flaring activity from the same active region produce oppositely directed magnetic clouds? Solar Phys. 244, 95. CrossRefADSGoogle Scholar
  15. Hu, Q., Sonnerup, B.U.O.: 2002, Reconstruction of magnetic clouds in the solar wind: Orientations and configurations. J. Geophys. Res. 107(A7). doi:10.1029/2001JA000293.
  16. Hu, Q., Smith, C.W., Ness, N.F., Skoug, R.M.: 2004, Multiple flux rope magnetic ejecta in the solar wind. J. Geophys. Res. 109, 3102. doi:10.1029/2003JA010101. CrossRefGoogle Scholar
  17. Hundhausen, A.J.: 1993, The sizes and locations of coronal mass ejections: SMM observations from 1980 and 1984 – 1989. J. Geophys. Res. 98, 13 177. CrossRefGoogle Scholar
  18. Kaiser, M., Kucera, T.A., Davila, J.M., St. Cyr, O.C., Guhathakurta, M., Christian, E.: 2007, The STEREO mission: An introduction. Space Sci. Rev. 136, 5. doi:10.1007/s11214-007-9277-0. CrossRefADSGoogle Scholar
  19. Leblanc, Y., Dulk, G.A., Vourlidas, A., Bougeret, J.-L.: 2001, Tracing shock waves from the corona to 1 AU. J. Geophys. Res. 106, 25 301. ADSGoogle Scholar
  20. Lepping, R.P., Jones, J.A., Burlaga, L.F.: 1990, Magnetic field structure of interplanetary magnetic clouds at 1 AU. J. Geophys. Res. 95(A8), 11 957. CrossRefADSGoogle Scholar
  21. Li, Y., Lynch, B.J., Stenborg, G., Luhmann, J.G., Huttunen, K.E.J., Welsch, B.T., Liewer, P.C., Vourlidas, A.: 2008, The solar magnetic field and coronal dynamics of the eruption on 2007 May 19. Astrophys. J. Lett. 681, L37. CrossRefADSGoogle Scholar
  22. Liu, Y., Richardson, J.D., Belcher, J.W., Wang, C., Hu, Q., Kasper, J.C.: 2006, Constraints on the global structure of magnetic clouds: Transverse size and curvature. J. Geophys. Res. 111. doi:10.1029/2006JA011890.
  23. Liu, Y., Luhmann, J.G., Huttunen, K.E.J., Lin, R.B., Bale, S.D., Russell, C.T., Galvin, A.B.: 2008, Reconstruction of the 2007 May 22 magnetic cloud: How much can we trust the flux-rope geometry of CMEs? Astrophys. J. Lett. 677, L133. CrossRefADSGoogle Scholar
  24. Mierla, M., Davila, J., Thompson, W., Inhester, B., Srivastava, N., Kramar, M., St. Cyr, O.C., Stenborg, G., Howard, R.A.: 2008, A quick method for estimating the propagation direction of coronal mass ejections using STEREO-COR1 images. Solar Phys. 252, 385–396. CrossRefADSGoogle Scholar
  25. Mulligan, T., Russell, C.T.: 2001, Multispacecraft modeling of the flux rope structure of interplanetary coronal mass ejections: Cylindrically symmetric versus nonsymmetric topologies. J. Geophys. Res. 106(A6), 10 581. CrossRefADSGoogle Scholar
  26. Mulligan, T., Russell, C.T., Luhmann, J.G.: 1998, Solar cycle evolution of the structure of magnetic clouds in the inner heliosphere. Geophys. Res. Lett. 25, 2959. CrossRefADSGoogle Scholar
  27. Mulligan, T., Russell, C.T., Anderson, B.J., Lohr, D.A., Rust, D., Toth, B.A., Zanetti, L.J., Acuna, M.H., Lepping, R.P., Golsing, J.T.: 1999, Intercomparison of NEAR and Wind interplanetary coronal mass ejection observations. J. Geophys. Res. 104, 28 217. CrossRefGoogle Scholar
  28. Neugebauer, M., Goldstein, R.: 1997, Particle and field signatures of coronal mass ejections in the solar wind. In: Crooker, N., Joselyn, J.A., Feynman, J. (eds.) Coronal Mass Ejections, Geophys. Monogr. 99, AGU, Washington, 245. Google Scholar
  29. Plunkett, S.P., Thompson, B.J., Howard, R.A., Michels, D.J., St. Cyr, O.C., Tappin, S.J., Schwenn, R., Lamy, P.L.: 1998, LASCO observations of an Earth-directed coronal mass ejection on May 12, 1997. Geophys. Res. Lett. 25, 2477. CrossRefADSGoogle Scholar
  30. Qiu, J., Hu, Q., Howard, T.A., Yurchyshyn, V.B.: 2007, On the magnetic flux budget in low-corona magnetic reconnection and interplanetary coronal mass ejections. Astrophys. J. 659, 758. doi:10.1086/512060. CrossRefADSGoogle Scholar
  31. Riley, P., Linker, J.A., Mikic, Z., Odstrcil, D., Zurbuchen, T.H., Lario, D., Lepping, R.P.: 2003, Using an MHD simulation to interpret the global context of a coronal mass ejection observed by two spacecraft. J. Geophys. Res. 108 (A7), 1272. CrossRefGoogle Scholar
  32. Riley, P., Linker, J.A., Lionello, R., Mikic, Z., Odstrcil, D., Hidalgo, M.A., Cid, C., Hu, Q., Lepping, R.P., Lynch, B.J., Rees, A.: 2004, Fitting flux ropes to a global MHD solution: A comparison of techniques. J. Atmos. Solar Terr. Phys. 66, 1321. CrossRefADSGoogle Scholar
  33. Shodhan, S., Crooker, N.U., Kahler, W., Fitzenreiter, R.J., Larson, D.E., Lepping, R.P., Siscoe, G.L., Gosling, J.T.: 2000, Counterstreaming electrons in magnetic clouds. J. Geophys. Res. 105, 27 261. CrossRefADSGoogle Scholar
  34. Tripathi, D., Bothmer, V., Cremades, H.: 2004, The basic characteristics of EUV post-eruptive arcades and their role as tracers of coronal mass ejections source regions. Astron. Astrophys. 422, 337. doi:10.1051/0004-6361:20035815. CrossRefADSGoogle Scholar
  35. Webb, D.F., Cliver, E.W., Crooker, N.U., St. Cyr, O.C., Thompson, B.J.: 2000, Relationship of halo coronal mass ejections, magnetic clouds, and magnetic storms. J. Geophys. Res. 105, 7491. CrossRefADSGoogle Scholar
  36. Yashiro, S., Gopalswamy, N., Michalek, G., St. Cyr, O.C., Plunkett, S.P., Rich, N.B., Howard, R.A.: 2004, A catalog of white light coronal mass ejections observed by the SOHO spacecraft. J. Geophys. Res. 109, A07105. doi:10.1029/2003JA010282. CrossRefGoogle Scholar
  37. Yurchyshyn, V.: 2008, Relationship between EIT posteruption arcades, coronal mass ejections, the coronal neutral line, and magnetic clouds. Astrophys. J. 675, L49. CrossRefADSGoogle Scholar
  38. Zhao, X.-P., Hoeksema, J.T.: 1998, Central axial field direction in magnetic clouds and its relation to southward interplanetary magnetic field events and dependence on disappearing solar filaments. J. Geophys. Res. 103, 2077. CrossRefADSGoogle Scholar

Copyright information

© The Author(s) 2008

Authors and Affiliations

  • E. K. J. Kilpua
    • 1
    • 2
  • P. C. Liewer
    • 3
  • C. Farrugia
    • 4
  • J. G. Luhmann
    • 1
  • C. Möstl
    • 5
    • 6
  • Y. Li
    • 1
  • Y. Liu
    • 1
  • B. J. Lynch
    • 1
  • C. T. Russell
    • 7
  • A. Vourlidas
    • 8
  • M. H. Acuna
    • 9
  • A. B. Galvin
    • 4
  • D. Larson
    • 1
  • J. A. Sauvaud
    • 10
  1. 1.Space Sciences LaboratoryUniversity of CaliforniaBerkeleyUSA
  2. 2.Department of Physical Sciences, Theoretical Physics DivisionUniversity of HelsinkiHelsinkiFinland
  3. 3.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA
  4. 4.Institute for the Study of Earth, Oceans, and SpaceUniversity of New HampshireDurhamUSA
  5. 5.Institute of PhysicsUniversity of GrazGrazAustria
  6. 6.Space Research InstituteAustrian Academy of SciencesGrazAustria
  7. 7.Institute of Geophysics and Planetary PhysicsUCLALos AngelesUSA
  8. 8.Solar Physics Branch, Naval Research LaboratoryWashingtonUSA
  9. 9.NASA/Goddard Space Flight CenterGreenbeltUSA
  10. 10.CESR/CNRSToulouseFrance

Personalised recommendations