Advertisement

Solar Physics

, Volume 252, Issue 2, pp 419–439 | Cite as

Predicting the Amplitude of a Solar Cycle Using the North – South Asymmetry in the Previous Cycle: II. An Improved Prediction for Solar Cycle 24

Article

Abstract

Recently, using Greenwich and Solar Optical Observing Network sunspot group data during the period 1874 – 2006, Javaraiah (Mon. Not. Roy. Astron. Soc. 377, L34, 2007: Paper I), has found that: (1) the sum of the areas of the sunspot groups in 0° – 10° latitude interval of the Sun’s northern hemisphere and in the time-interval of −1.35 year to +2.15 year from the time of the preceding minimum of a solar cycle n correlates well (corr. coeff. r=0.947) with the amplitude (maximum of the smoothed monthly sunspot number) of the next cycle n+1. (2) The sum of the areas of the spot groups in 0° – 10° latitude interval of the southern hemisphere and in the time-interval of 1.0 year to 1.75 year just after the time of the maximum of the cycle n correlates very well (r=0.966) with the amplitude of cycle n+1. Using these relations, (1) and (2), the values 112±13 and 74±10, respectively, were predicted in Paper I for the amplitude of the upcoming cycle 24. Here we found that the north – south asymmetries in the aforementioned area sums have a strong ≈44-year periodicity and from this we can infer that the upcoming cycle 24 will be weaker than cycle 23. In case of (1), the north – south asymmetry in the area sum of a cycle n also has a relationship, say (3), with the amplitude of cycle n+1, which is similar to (1) but more statistically significant (r=0.968) like (2). By using (3) it is possible to predict the amplitude of a cycle with a better accuracy by about 13 years in advance, and we get 103±10 for the amplitude of the upcoming cycle 24. However, we found a similar but a more statistically significant (r=0.983) relationship, say (4), by using the sum of the area sum used in (2) and the north – south difference used in (3). By using (4) it is possible to predict the amplitude of a cycle by about 9 years in advance with a high accuracy and we get 87±7 for the amplitude of cycle 24, which is about 28% less than the amplitude of cycle 23. Our results also indicate that cycle 25 will be stronger than cycle 24. The variations in the mean meridional motions of the spot groups during odd and even numbered cycles suggest that the solar meridional flows may transport magnetic flux across the solar equator and potentially responsible for all the above relationships.

Keywords

Southern Hemisphere Solar Cycle Solar Phys Sunspot Number Sunspot Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Antonucci, E., Hoeksema, J.T., Scherrer, P.H.: 1990, Astrophys. J. 360, 296. CrossRefADSGoogle Scholar
  2. Atac, T., Özgüc, A.: 1996, Solar Phys. 166, 201. CrossRefADSGoogle Scholar
  3. Babcock, H.W.: 1961, Astrophys. J. 133, 572. CrossRefADSGoogle Scholar
  4. Ballester, J.L., Oliver, R., Carbonell, M.: 2005, Astron. Astrophys. 431, L5. CrossRefADSGoogle Scholar
  5. Bracewell, R.N.: 1988, Mon. Not. Roy. Astron. Soc. 230, 535. ADSGoogle Scholar
  6. Brajsa, R., Ruzdjak, D., Wöhl, H.: 2006, Solar Phys. 237, 365. CrossRefADSGoogle Scholar
  7. Cameron, R., Schüssler, M.: 2007, Astrophys. J. 659, 801. CrossRefADSGoogle Scholar
  8. Carbonell, M., Oliver, R., Ballester, J.L.: 1993, Astron. Astrophys. 274, 497. ADSGoogle Scholar
  9. Chang, H.Y.: 2008, New Astron. 13, 195. CrossRefADSGoogle Scholar
  10. Choudhuri, A.R., Chatterjee, P., Jiang, J.: 2007, Phys. Rev. Lett. 98, 131103. CrossRefADSGoogle Scholar
  11. Dikpati, M., Gilman, P.A.: 2006, Astrophys. J. 649, 498. CrossRefADSGoogle Scholar
  12. Dikpati, M., de Toma, G., Gilman, P.A.: 2006, Geophys. Res. Lett. 33, L05102. CrossRefGoogle Scholar
  13. Dikpati, M., Gilman, P.A., de Toma, G.: 2008, Astrophys. J. 673, L99. CrossRefADSGoogle Scholar
  14. Duchlev, P.I., Dermendjiev, V.N.: 1996, Solar Phys. 168, 205. CrossRefADSGoogle Scholar
  15. Echer, E., Rigozo, N.R., Nordemann, D.J.R., Vieira, L.E.A.: 2004, Ann. Geophys. 22, 2239. ADSCrossRefGoogle Scholar
  16. Fairbridge, R.W., Hillaire-Marcel, C.: 1977, Nature 268, 413. CrossRefADSGoogle Scholar
  17. Garcia, H.A.: 1990, Solar Phys. 127, 185. CrossRefADSGoogle Scholar
  18. Georgieva, K.: 2002, Phys. Chem. Earth 27, 433. Google Scholar
  19. Georgieva, K., Kirov, B.: 2003, In: Wilson, A. (ed.) SOHO 12/GONG+ 2002, Local and Global Helioseismology: The Present and Future SP-517, ESA, Noordwijk, 275. Google Scholar
  20. Georgieva, K., Kirov, B., Javaraiah, J., Krasteva, R.: 2005, Planet. Space Sci. 53, 197. CrossRefADSGoogle Scholar
  21. Gigolashvili, M.S., Japaridze, D.R., Kukhianidze, V.J.: 2005, Solar Phys. 231, 23. CrossRefADSGoogle Scholar
  22. Gnevyshev, M.N.: 1967, Solar Phys. 1, 107. CrossRefADSGoogle Scholar
  23. Gnevyshev, M.N., Ohl, A.I.: 1948, Astron. Z. 25, 18. Google Scholar
  24. Gokhale, M.H., Javaraiah, J.: 1990, Mon. Not. Roy. Astron. Soc. 243, 241. ADSGoogle Scholar
  25. Gokhale, M.H., Javaraiah, J.: 1995, Solar Phys. 156, 157. CrossRefADSGoogle Scholar
  26. Hathaway, D.H., Wilson, R.M.: 1990, Astrophys. J. 357, 271. CrossRefADSGoogle Scholar
  27. Hathaway, D.H., Wilson, R.M.: 2004, Solar Phys. 224, 5. CrossRefADSGoogle Scholar
  28. Hathaway, D.H., Wilson, R.M.: 2006, Geophys. Res. Lett. 33, L18101. CrossRefADSGoogle Scholar
  29. Hathaway, D.H., Wilson, R.M., Reichmann, E.J.: 1999, J. Geophys. Res. 104, 22375. CrossRefADSGoogle Scholar
  30. Hathaway, D.H., Nandy, D., Wilson, R.M., Reichmann, E.J.: 2003, Astrophys. J. 589, 665 (Erratum: 602, 543 (2004)). CrossRefADSGoogle Scholar
  31. Hiremath, K.M.: 2006, Astron. Astrophys. 452, 591. CrossRefADSGoogle Scholar
  32. Hiremath, K.M.: 2008, Astrophys. Space Sci. 314, 45. CrossRefADSGoogle Scholar
  33. Javaraiah, J.: 2003, Solar Phys. 212, 23. CrossRefADSGoogle Scholar
  34. Javaraiah, J.: 2005, Mon. Not. Roy. Astron. Soc. 362, 1311. CrossRefADSGoogle Scholar
  35. Javaraiah, J.: 2007, Mon. Not. Roy. Astron. Soc. 377, L34 (Paper I). CrossRefADSGoogle Scholar
  36. Javaraiah, J., Gokhale, M.H.: 1995, Solar Phys. 158, 173. CrossRefADSGoogle Scholar
  37. Javaraiah, J., Gokhale, M.H.: 1997, Solar Phys. 170, 389. CrossRefADSGoogle Scholar
  38. Javaraiah, J., Komm, R.W.: 1999, Solar Phys. 184, 41. CrossRefADSGoogle Scholar
  39. Javaraiah, J., Ulrich, R.: 2006, Solar Phys. 237, 245. CrossRefADSGoogle Scholar
  40. Javaraiah, J., Bertello, L., Ulrich, R.: 2005a, Astrophys. J. 626, 579. CrossRefADSGoogle Scholar
  41. Javaraiah, J., Bertello, L., Ulrich, R.: 2005b, Solar Phys. 232, 25. CrossRefADSGoogle Scholar
  42. Jiang, J., Chatterjee, P., Choudhuri, A.R.: 2007, Mon. Not. Roy. Astron. Soc. 381, 1527. CrossRefADSGoogle Scholar
  43. Joshi, B., Pant, P.: 2005, Astron. Astrophys. 431, 359. CrossRefADSGoogle Scholar
  44. Juckett, D.: 2003, Astron. Astrophys. 399, 731. CrossRefADSGoogle Scholar
  45. Kane, R.P.: 1999, Solar Phys. 189, 217. CrossRefADSGoogle Scholar
  46. Kane, R.P.: 2007a, Solar Phys. 243, 205. CrossRefADSGoogle Scholar
  47. Kane, R.P.: 2007b, Solar Phys. 246, 471. CrossRefADSGoogle Scholar
  48. Knaack, R., Stenflo, J.O., Berdyugina, S.V.: 2005, Astron. Astrophys. 438, 1067. CrossRefADSGoogle Scholar
  49. Li, K.J., Yun, H.S., Gu, X.M.: 2001, Astron. Astrophys. 368, 285. CrossRefADSGoogle Scholar
  50. Li, K.J., Wang, J.X., Xiong, S.Y., Liang, H.F., Yun, H.S., Gu, X.M.: 2002, Astron. Astrophys. 383, 648. CrossRefADSGoogle Scholar
  51. Makarov, V.I., Tlatov, A.G., Sivaraman, K.R.: 2001, Solar Phys. 202, 11. CrossRefADSGoogle Scholar
  52. Makarov, V.I., Tlatov, A.G., Sivaraman, K.R.: 2003, Solar Phys. 214, 41. CrossRefADSGoogle Scholar
  53. Merzlyakov, V.L.: 1997, Solar Phys. 170, 425. CrossRefADSGoogle Scholar
  54. Obridko, V.N., Shelting, B.D.: 2008, Solar Phys. 248, 191. CrossRefADSGoogle Scholar
  55. Ohl, A.I.: 1966, Soln. Dannye 12, 84. Google Scholar
  56. Ossendrijver, M.: 2003, Astron. Astrophys. Rev. 11, 287. CrossRefADSGoogle Scholar
  57. Piddington, J.H.: 1976, In: Bumba, V., Kleczek, J. (eds.) Basic Mechanisms of Solar Activity, IAU Symp. 71, 389. Google Scholar
  58. Rosner, R., Weiss, N.O.: 1992, In: Harvey, K.L. (ed.) The Solar Cycle CS-27, Astron. Soc. Pac., San Francisco, 511. Google Scholar
  59. Roy, J.R.: 1977, Solar Phys. 52, 53. CrossRefADSGoogle Scholar
  60. Rozelot, J.P.: 1994, Solar Phys. 149, 149. CrossRefADSGoogle Scholar
  61. Schatten, K.: 2005, Geophys. Res. Lett. 32, L21106. CrossRefADSGoogle Scholar
  62. Schatten, K.H., Sherrer, P.H., Svalgaard, L., Wilcox, J.M.: 1978, Geophys. Res. Lett. 5, 411. CrossRefADSGoogle Scholar
  63. Sokoloff, D., Nesme-Ribes, E.: 1994, Astron. Astrophys. 288, 293. ADSGoogle Scholar
  64. Stenflo, J.O.: 1988, Astrophys. Space Sci. 144, 321. ADSGoogle Scholar
  65. Svalgaard, L., Cliver, E.W., Kamide, Y.: 2005, Geophys. Res. Lett. 32, L01104. CrossRefGoogle Scholar
  66. Swinson, D.B., Koyama, H., Saito, T.: 1986, Solar Phys. 106, 35. CrossRefADSGoogle Scholar
  67. Temmer, M., Rybak, J., Bendik, P., Veronig, A., Vogler, F., Otruba, W., Potzi, W., Hanslmeier, A.: 2006, Astron. Astrophys. 447, 735. CrossRefADSGoogle Scholar
  68. Tlatov, A.G.: 2007, Astron. Lett. 33, 771. CrossRefADSGoogle Scholar
  69. Tuominen, J.: 1952, Z. Astrophys. 30, 261. ADSGoogle Scholar
  70. Ulrich, R.K., Boyden, J.E.: 2005, Astrophys. J. 620, L123. CrossRefADSGoogle Scholar
  71. Verma, V.K.: 1993, Astrophys. J. 403, 797. CrossRefADSGoogle Scholar
  72. Wang, Y.-M.: 2004, Solar Phys. 224, 21. CrossRefADSGoogle Scholar
  73. Yi, W.: 1992, J. Roy. Astron. Soc. Can. 86, 89. ADSGoogle Scholar
  74. Zaatri, A., Komm, R., González, H.I., Howe, R., Corbard, T.: 2006, Solar Phys. 236, 227. CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Indian Institute of AstrophysicsBangaloreIndia

Personalised recommendations