Solar Physics

, Volume 252, Issue 1, pp 209–220 | Cite as

Predictions of Solar Cycle 24

Open Access
Article

Abstract

A summary and analysis of more than 50 predictions of the amplitude of the upcoming Solar Cycle 24 is presented. All of the predictions were published before solar minimum and represent our efforts to anticipate solar maximum at ever-earlier epochs. The consistency of the predictions within their assigned categories is discussed. Estimates of the significance of the predictions, compared to the climatological average, are presented.

References

  1. Badalyan, O.G., Obridko, V., Sykora, N.J.: 2001, Brightness of the coronal green line and prediction for activity cycles 23 and 24. Solar Phys. 199, 421 – 435. CrossRefADSGoogle Scholar
  2. Baranovski, A.L.: 2006, Shape fitting modeling and nonlinear solar cycles forecasting, Prediction submitted 8 September 2006. Google Scholar
  3. Biesecker, D.: 2007, The Solar Cycle 24 Prediction Panel, Consensus statement of the Solar Cycle 24 Prediction Panel, Released March 2007. http://www.swpc.noaa.gov/SolarCycle/SC24/.
  4. Cameron, R., Schüssler, M.: 2007, Solar cycle prediction using precursors and flux transport models. Astrophys. J. 659, 801 – 811. doi: 10.1086/512049. CrossRefADSGoogle Scholar
  5. Chopra, P., Dabas, R.S.: 2006, Prediction of maximum amplitude of the next Solar Cycle 24 using modified precursor method. In: Proc. 36th COSPAR Scientific Assembly 36, 909. Google Scholar
  6. Choudhuri, A.R., Chatterjee, P., Jiang, J.: 2007, Predicting Solar Cycle 24 with a solar dynamo model. Phys. Rev. Lett. 98, 131103. doi: 10.1103/PhysRevLett.98.131103. CrossRefADSGoogle Scholar
  7. Clilverd, M.A., Clarke, E., Ulich, T., Rishbeth, H., Jarvis, M.J.: 2006, Predicting Solar Cycle 24 and beyond. Space Weather 4, S09005. doi: 10.1029/2005SW000207. CrossRefGoogle Scholar
  8. Dabas, R.S., Sharma, K., Das, R.M., Pillai, K.G.M., Chopra, P., Sethi, N.K.: 2008, A prediction of Solar Cycle 24 using a modified precursor method. Solar Phys. doi: 10.1007/s11207-008-9200-1. Google Scholar
  9. de Meyer, F.: 2003, A transfer function model for the sunspot cycle. Solar Phys. 217, 349 – 366. CrossRefADSGoogle Scholar
  10. Dikpati, M., de Toma, G., Gilman, P.A.: 2006, Predicting the strength of solar cycle 24 using a flux-transport dynamo-based tool. Geophys. Res. Lett. 33, L05102. doi: 10.1029/2005GL025221. CrossRefGoogle Scholar
  11. Du, Z., Du, S.: 2006, The relationship between the amplitude and descending time of a solar activity cycle. Solar Phys. 238, 431 – 437. CrossRefADSGoogle Scholar
  12. Duhau, S.: 2003, An early prediction of maximum sunspot number in Solar Cycle 24. Solar Phys. 213, 203 – 212. CrossRefADSGoogle Scholar
  13. Echer, E., Rigozo, N.R., Nordemann, D.J.R., Vieira, L.E.A.: 2004, Prediction of solar activity on the basis of spectral characteristics of sunspot number. Ann. Geophys. 22, 2239 – 2243. doi: 1432-0576/ag/2004-22-2239. ADSCrossRefGoogle Scholar
  14. Euler, H.C. Jr., Smith, S.W.: 2006, Future solar activity estimates for use in prediction of space environmental effects on spacecraft orbital lifetime and performance. http://sail.msfc.nasa.gov/current_solar_report/CurRpt.pdf. Results in table are from the September 2006 report.
  15. Gholipour, A., Lucasa, C., Araabia, B.N., Shafiee, M.: 2005, Solar activity forecast: Spectral analysis and neurofuzzy prediction. J. Atmos. Solar-Terr. Phys. 67, 595 – 603. CrossRefADSGoogle Scholar
  16. Hamid, R.H., Galal, A.A.: 2006, Preliminary prediction of the strength of the 24th 11-year solar cycle. In: Bothmer, V., Hady, A.A. (eds.) Solar Activity and its Magnetic Origin, Proceedings of the 233rd Symposium of the IAU, Cambridge Univ. Press, Cambridge, 413 – 416. Google Scholar
  17. Hathaway, D.H., Wilson, R.M.: 2004, What the sunspot record tells us about space climate. Solar Phys. 224, 5 – 19. CrossRefADSGoogle Scholar
  18. Hathaway, D.H., Wilson, R.M.: 2006, Geomagnetic activity indicates large amplitude for sunspot cycle 24. Geophys. Res. Lett. 33, L18101. doi: 10.1029/2006GL027053. CrossRefADSGoogle Scholar
  19. Hiremath, K.M.: 2008, Prediction of solar cycle 24 and beyond. Astrophys. Space Sci. doi: 10.1007/s10509-007-9728-9. MATHGoogle Scholar
  20. Horstman, M.: 2005, Varying solar flux models and their effect on the future debris environment projection. Orbital Debris Q. News 9, 4 – 5. Google Scholar
  21. Jain, R.: 2006, Prediction of the amplitude in sunspot cycle 24. 36th COSPAR 36, 642. Google Scholar
  22. Janssens, J.: 2005, Solar Cycle 24: Overview of predictions on the start and amplitude of a new solar cycle. Accessed as http://members.chello.be/j.janssens/SC24pred.pdf.
  23. Janssens, J.: 2006, Solar Cycle 24: Overview of predictions on the start and amplitude of a new solar cycle. Accessed as http://members.chello.be/j.janssens/SC24.html.
  24. Javaraiah, J.: 2007, North-south asymmetry in solar activity: Predicting the amplitude of the next solar cycle. Mon. Not. Roy. Astron. Soc. Lett. 377, L34 – L38. doi: 10.1111/j.1745-3933.2007.00298.x. CrossRefADSGoogle Scholar
  25. Joselyn, J.A., Anderson, J.B., Coffey, H., Harvey, K., Hathaway, D., Heckman, G., Hildner, E., Mende, W., Schatten, K., Thompson, R., Thomson, A.W.P., White, O.R.: 1997, Panel achieves consensus prediction of Solar Cycle 23. EOS Trans. AGU 78, 205 – 212. CrossRefADSGoogle Scholar
  26. Kane, R.P.: 1999, Prediction of the sunspot maximum of solar cycle 23 by extrapolation of spectral components. Solar Phys. 189, 217 – 224. CrossRefADSGoogle Scholar
  27. Kane, R.P.: 2007, A preliminary estimate of the size of the coming solar cycle 24, based on Ohl’s precursor method. Solar Phys. 243, 205 – 217. CrossRefADSGoogle Scholar
  28. Keeping, E.S.: 1962, Introduction to Statistical Inference, Van Nostrand, Princeton (Dover reprint published 1995). Google Scholar
  29. Kennewell, J., Patterson, G.: 2006, Prediction submitted 11 September 2006. Google Scholar
  30. Khramova, M.N., Krasotkin, S.A., Kononovich, E.V.: 2002, New aspects of solar activity forecast. In: Sawaya-Lacoste, H. (ed.) Solspa 2001, Proceedings of the Second Solar Cycle and Space Weather Euroconference SP-477, ESA, Noordwijk, 229 – 232. Google Scholar
  31. Kim, M.-H.Y., Wilson, J.W., Cucinotta, F.A.: 2006, A solar cycle statistical model for the projection of space radiation environment. Adv. Space Res. 37, 1741 – 1748. doi: 10.1016/j.asr.2004.11.036. CrossRefADSGoogle Scholar
  32. Kontor, N.N.: 2006, Statistics based regular extrapolation, Prediction submitted 28 August 2006. Google Scholar
  33. Lantos, P.: 2006, The skewness of a solar cycle as a precursor of the amplitude of the next. Solar Phys. 229, 373 – 386. doi: 10.1007/s11207-006-0128-z. CrossRefADSGoogle Scholar
  34. Li, K.-J., Gao, P.-X., Su, T.-W.: 2005, Estimating the size and timing of the maximum amplitude of Solar Cycle 24. Chin. J. Astron. Astrophys. 5, 539 – 545. CrossRefADSGoogle Scholar
  35. Lynch, P.: 2008, The ENIAC forecasts: A re-creation. Bull. Am. Meteorol. Soc. 89, 45 – 55. CrossRefGoogle Scholar
  36. Mandel, J.: 1964, The Statistical Analysis of Experimental Data, Wiley, New York (Dover reprint published 1984). Google Scholar
  37. Maris, G., Oncica, A.: 2006, Solar Cycle 24 forecasts. Sun Geospace 1. http://www.stil.bas.bg/IHY/forms/SUN_GEO200601.html.
  38. Mariş, G., Popescu, M.D., Beşliu, D.: 2004, Solar Cycle 23 analysis. In: Stepanov, A.V., Benevolenskaya, E.E., Kosovichev, A.G. (eds.) Multi-Wavelength Investigations of Solar Activity, IAU Symposium 223, Cambridge Univ. Press, Cambridge, 127 – 128. Google Scholar
  39. Nevanlinna, H.: 2007, Prediction submitted to panel. Google Scholar
  40. NOAA: 2006, List of sunspot maximum and minimum 1610-present. Accessed as ftp://ftp.ngdc.noaa.gov/STP/SOLAR_DATA/SUNSPOT_NUMBERS/maxmin.new.
  41. NOAA: 2007, Press release accessed as http://www.noaanews.noaa.gov/stories2007/s2831.htm.
  42. Podladchikova, T., Lefebvre, B., Van der Linden, R.: 2006, Peak sunspot number for Solar Cycle 24. Prediction submitted 12 September 2006. Google Scholar
  43. Press, W.H., Flannery, B.P., Teukolsky, S.A., Vettering, W.T.: 1992, Numerical Recipes, 2nd edn. Cambridge Univ. Press, London, 610 – 612. Google Scholar
  44. Prochasta, R.D.: 2006, Prediction submitted 12 September 2006. Google Scholar
  45. Rabin, D.M.: 2007, Forecast of the amplitude of Solar Cycle 24 based on the disturbed days precursor. Bull. Am. Astron. Soc. 210, 92.05 ADSGoogle Scholar
  46. Roth, M.: 2006, Prediction submitted 12 September 2006. Google Scholar
  47. Schatten, K.: 2005, Fair space weather for solar cycle 24. Geophys. Res. Lett. 32, L21106. doi: 10.1029/2005GL024363. CrossRefADSGoogle Scholar
  48. Sello, S.: 2003, Solar cycle activity: A preliminary prediction for cycle #24. Astron. Astrophys. 410, 691 – 693. doi: 10.1051/0004-6361:20031295. CrossRefADSGoogle Scholar
  49. Sello, S.: 2006, Update of prediction email dated 4 October 2006. Google Scholar
  50. Shea, M.A., Smart, D.F.: 2000, Fifty years of cosmic radiation data. Space Sci. Rev. 93, 229 – 262. CrossRefADSGoogle Scholar
  51. Svalgaard, L., Cliver, E.W., Kamide, Y.: 2005, Cycle 24: The smallest sunspot cycle in 100 years?. Geophys. Res. Lett. 32, L01104. doi: 10.1029/2004GL021664. CrossRefGoogle Scholar
  52. Thompson, R.J.: 1993, A technique for predicting the amplitude of the solar cycle. Solar Phys. 148, 383 – 389. CrossRefADSGoogle Scholar
  53. Thompson, R.J.: 2008, Prediction for Cycle 24 using minimum value of Ap (12-month average), Prediction submitted March 2008. Google Scholar
  54. Tlatov, A.G.: 2006, Indices of solar activity minimum of sunspot cycles and prediction solar cycle 24, Prediction submitted 26 September 2006. Google Scholar
  55. Tritakis, V., Mavromichalaki, H., Giouvanellis, G.: 2006, Prediction of basic elements of the forthcoming solar cycles 24 and 25 (years 2005 – 2027). In: Solomos, N. (ed.) Recent Advances in Astronomy and Astrophyiscs: 7th International Conference of the Hellenic Astronomical Society. AIP Conf. Proc. 848, 154–162. doi: 10.1063/1.2347972.
  56. Tsirulnik, L.B., Kuznetsova, T.V., Oraevsky, V.N.: 1997, Forecasting the 23rd and 24th solar cycles on the basis of MGM spectrum. Adv. Space Res. 20, 2369 – 2372. doi: 10.1016/S0273-1177(97)00909-5. CrossRefADSGoogle Scholar
  57. Volobuev, D.M., Makarenko, N.G.: 2008, Forecast of the decadal average sunspot number. Solar Phys. 249, 121 – 133. doi: 10.1007/s11207-008-9167-y. CrossRefADSGoogle Scholar
  58. Wang, J.-L., Gong, J.-C., Liu, S.-Q., Le, G.-M., Sun, J.-L.: 2002, The prediction of maximum amplitudes of solar cycles and the maximum amplitude of solar cycle 24. Chin. J. Astron. Astrophys. 2, 557 – 562. ADSCrossRefGoogle Scholar
  59. Wilks, D.S.: 1995, Statistical Methods in the Atmospheric Sciences, Academic Press, San Diego. Google Scholar
  60. Yule, G.U.: 1927, VII. On a method of investigating periodicities in disturbed series, with special reference to Wolfer’s sunspot number. Phil. Trans. Roy. Soc. London A 226, 267 – 298. CrossRefADSGoogle Scholar
  61. Xu, T., Wu, J., Wu, Z.-S., Li, Q.: 2008, Long-term sunspot number prediction based on EMD analysis and AR model. Chin. J. Astron. Astrophys. 8, 337 – 342. CrossRefADSGoogle Scholar

Copyright information

© The Author(s) 2008

Authors and Affiliations

  1. 1.Code 671NASA Goddard Space Flight CenterGreenbeltUSA

Personalised recommendations