Solar Physics

, Volume 251, Issue 1–2, pp 453–468 | Cite as

Effects of Random Flows on the Solar f Mode: I. Horizontal Flow



We examine the effect of random horizontal flows on the dispersion relation of high-degree solar f modes. We follow the approach of Murawski and Roberts (Astron. Astrophys. 272, 595, 1993), addressing some limitations of that paper, and extending the results to include damping and to apply for a general turbulent spectrum. We find a reduction in frequency below the classical result that is about three times that observed. For large wavenumber the damping rate is larger than the frequency correction by a factor of the order of the nondimensional wavenumber, which appears to be consistent with observation.


Surface gravity waves Turbulence Dispersion relation Damping 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abramowitz, M., Stegun, I.: 1965, Handbook of Mathematical Functions. Dover, New York. Google Scholar
  2. Antia, H.M., Basu, S.: 1999, High-frequency and high-wavenumber solar oscillations. Astrophys. J. 519, 400 – 406. CrossRefADSGoogle Scholar
  3. Batchelor, G.: 1953, The Theory of Homogeneous Turbulence, Cambridge University Press, Cambridge. MATHGoogle Scholar
  4. Bogdan, T.J., Brown, T.M., Lites, B.W., Thomas, J.H.: 1993, The absorption of p-modes by sunspots: variations with degree and order. Astrophys. J. 406, 723 – 734. CrossRefADSGoogle Scholar
  5. Campbell, W.R., Roberts, B.: 1989, The influence of a chromospheric magnetic field on the solar p- and f-modes. Astrophys. J. 338, 538 – 556. CrossRefADSGoogle Scholar
  6. Duvall, T.L., Kosovichev, A.G., Murawski, K.: 1998, Random damping and frequency reduction of the solar f-mode. Astrophys. J. 505, L55 – L58. CrossRefADSGoogle Scholar
  7. Erdélyi, R.: 2006a, Magnetic coupling of waves and oscillations in the lower solar atmosphere: can the tail wag the dog? Philos. Trans. Roy. Soc. A 364, 351 – 381. CrossRefADSGoogle Scholar
  8. Erdélyi, R.: 2006b, Magnetic seismology of the lower solar atmosphere. In: Fletcher, K., Thompson, M. (eds.) Proceedings of SOHO 18/GONG 2006/HELAS I, Beyond the spherical Sun SP-624, ESA, Noordwijk, 15.1. Google Scholar
  9. Erdélyi, R., Kerekes, A., Mole, N.: 2005, Influence of random magnetic field on solar global oscillations: the incompressible f-mode. Astron. Astrophys. 431, 1083 – 1088. CrossRefADSGoogle Scholar
  10. Evans, D., Roberts, B.: 1990, The influence of a chromospheric magnetic field on the solar p- and f-modes. II. Uniform chromospheric field. Astrophys. J. 356, 704 – 719. CrossRefADSGoogle Scholar
  11. Fabrikant, A.L., Raevsky, M.A.: 1994, The influence of drift flow turbulence on surface gravity wave propagation. J. Fluid Mech. 262, 141 – 156. MATHCrossRefADSMathSciNetGoogle Scholar
  12. Kerekes, A.: 2007, Random effects on the solar f -mode. PhD thesis, University of Sheffield. Google Scholar
  13. Kerekes, A., Erdélyi, R., Mole, N.: 2008, Effect of random flows on the solar f mode: II. Horizontal and vertical flow. Solar Phys. in press. Google Scholar
  14. Mędrek, M., Murawski, K., Roberts, B.: 1999, Damping and frequency reduction of the f-mode due to turbulent motion in the solar convection zone. Astron. Astrophys. 349, 312 – 316. ADSGoogle Scholar
  15. Murawski, K., Roberts, B.: 1993a, Random velocity field corrections to the f-mode. I. Horizontal flows. Astron. Astrophys. 272, 595 – 600. ADSGoogle Scholar
  16. Murawski, K., Roberts, B.: 1993b, Random velocity field corrections to the f-mode. II. Vertical and horizontal flow. Astron. Astrophys. 272, 601 – 608. ADSGoogle Scholar
  17. Murawski, K., Duvall, T.L. Jr., Kosovichev, A.G.: 1998, Damping and Frequency Shift of the Solar f-mode Due to the Interaction with Turbulent Convection. In: Korzennik, S. (ed.) Structure and Dynamics of the Interior of the Sun and Sun-like Stars SP-418, ESA, Noordwijk, 825 – 828. Google Scholar
  18. Nocera, L., Medrek, M., Murawski, K.: 2001, Solar acoustic oscillations in a random density field. Astron. Astrophys. 373, 301 – 306. MATHCrossRefADSGoogle Scholar
  19. Rosenthal, C.S.: 1995, The role of photospheric magnetic fields in the variation of solar oscillation eigenfrequencies. Astrophys. J. 438, 434 – 444. CrossRefADSGoogle Scholar
  20. Rosenthal, C.S., Christensen-Dalsgaard, J.: 1995, The interfacial f-mode in a spherical solar model. Mon. Not. Roy. Astron. Soc. 276, 1003 – 1008. ADSGoogle Scholar
  21. Rosenthal, C.S., Gough, D.O.: 1994, The solar f-mode as an interfacial mode at the chromosphere – corona transition. Astrophys. J. 423, 488 – 495. CrossRefADSGoogle Scholar
  22. Sazontov, A.G., Shagalov, S.V.: 1986, Scattering of gravity waves by a turbulence of the upper ocean layer. Izv. Atmos. Ocean. Phys. 22, 138 – 143. Google Scholar
  23. Taroyan, Y.: 2003, MHD waves and resonant interactions in steady states. PhD thesis, University of Sheffield. Google Scholar
  24. Taroyan, Y., Erdélyi, R.: 2006, Seismology of quiescent coronal loops. In: Bothmer, V., Hady, A.A. (eds.) Solar Activity and its Magnetic Origin, IAU Symp. 233, Cambridge University Press, Cambridge, 191 – 192. Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Solar Physics and Space Plasma Research Centre, Department of Applied MathematicsUniversity of SheffieldSheffieldUK

Personalised recommendations