Advertisement

Solar Physics

, Volume 250, Issue 1, pp 147–158 | Cite as

Modeling of Solar Wind in the Coronal Funnel with Mass and Energy Supplied at 5 Mm

  • J.-S. He
  • C.-Y. Tu
  • E. Marsch
Open Access
Article

Abstract

The origin of the solar wind is a long-standing issue in both observational and theoretical studies. To understand how and where in the solar atmosphere the mass and energy of the solar wind are supplied is very important. Previous observation suggests a scenario in which the fast solar wind originates at heights above 5 Mm in the magnetically open funnel, a process that is accompanied by downward flow below 5 Mm, whereby the mass and energy are supplied through reconnection between the open funnel and adjacent closed loops. Based on this scenario, we develop a fluid model to study the solar wind generation under the assumption that mass and energy are deposited in the open funnel at 5 Mm. The mass supply rate is estimated from the mass loss rate as given by the emptying of the side loops as a result of their assumed reconnection with the open funnel. Similarly, the energy input rate is consistent with the energy release rate as estimated from the energy flux associated with the reconnection between the open magnetic funnel and the closed magnetic loops. Following the observations, we not only simulate the plasma flowing upward to form the solar wind but also calculate the downward flow back to the lower atmosphere. This model is a first attempt to study physically the proposed scenario of solar wind origin and gives a new physical illustration of the possible initial deposition and consequent transportation of mass and energy in the coronal funnel.

Keywords

Solar Wind Polar Coronal Hole Fast Solar Wind Energy Input Rate Solar Wind Origin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Axford, W.I., McKenzie, J.F.: 1992, In: Marsch, E., Schwenn, R. (eds.) Solar Wind Seven, COSPAR Colloq. 3, 1. Google Scholar
  2. Banaszkiewicz, M., Axford, W.I., McKenzie, J.F.: 1998, Astron. Astrophys. 337, 940. ADSGoogle Scholar
  3. Dammasch, I.E., Wilhelm, K., Curdt, W., Hassler, D.M.: 1999, Astron. Astrophys. 346, 285. ADSGoogle Scholar
  4. De Pontieu, B., McIntosh, S.W., Carlsson, M., Hansteen, V.H., Tarbell, T.D., Schrijver, C.J., et al.: 2007, Science 318, 1574. CrossRefADSGoogle Scholar
  5. Del Zanna, G., Bromage, B.J.I.: 1999, In: Vial, J.-C., Kaldeich-Schümann, B. (eds.) Plasma Dynamics and Diagnostics in the Solar Transition Region and Corona, Proc. 8th SOHO Workshop SP-446, ESA, Noordwijk, 269. Google Scholar
  6. Hackenberg, P., Marsch, E., Mann, G.: 2000, Astron. Astrophys. 360, 1139. ADSGoogle Scholar
  7. Hansteen, V.H., Leer, E.: 1995, J. Geophys. Res. 100, 21577. CrossRefADSGoogle Scholar
  8. Hassler, D.M., Dammasch, I.E., Lemaire, P., Brekke, P., Curdt, W., Mason, H.E., Vial, J.-C., Wilhelm, K.: 1999, Science 283, 810. CrossRefADSGoogle Scholar
  9. He, J.-S., Tu, C.-Y., Marsch, E.: 2007, Astron. Astrophys. 468, 307. CrossRefADSGoogle Scholar
  10. Hinton, F.L.: 1983, In: Galeev, A.A., Sudan, R.N. (eds.) Basic Plasma Physics I, Handbook of Plasma Physics 1, North-Holland, Amsterdam, 147. Google Scholar
  11. Hollweg, J.V.: 1986, J. Geophys. Res. 91, 4111. CrossRefADSGoogle Scholar
  12. Marsch, E., Tu, C.-Y.: 1997, Solar Phys. 176, 87. CrossRefADSGoogle Scholar
  13. Marsch, E., Wiegelmann, T., Xia, L.-D.: 2004, Astron. Astropyhs. 428, 629. CrossRefADSGoogle Scholar
  14. Marsch, E., Zhou, G.-Q., He, J.-S., Tu, C.-Y.: 2006, Astron. Astropyhs. 457, 699. CrossRefADSGoogle Scholar
  15. McKenzie, J.F., Sukhorukova, G.V., Axford, W.I.: 1998, Astron. Astrophys. 330, 1145. ADSGoogle Scholar
  16. Okamoto, T.J., Tsuneta, S., Berger, T.E., Ichimoto, K., Katsukawa, Y., Lites, B.W., et al.: 2007, Science 318, 1577. CrossRefADSGoogle Scholar
  17. Parker, E.N.: 1958, Astrophys. J. 128, 664. CrossRefADSGoogle Scholar
  18. Peter, H., Judge, P.G.: 1999, Astrophys. J. 552, 1148. CrossRefADSGoogle Scholar
  19. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannnery, B.P.: 1992, Numerical Recipes in Fortran: The Art of Scientific Computing, Cambridge University Press, Cambridge. Google Scholar
  20. Rosner, R., Tucker, W.H., Vaiana, G.S.: 1978, Astrophys. J. 220, 643. CrossRefADSGoogle Scholar
  21. Suzuki, T.K., Inutsuka, S.-I.: 2005, Astrophys. J. 632, L49. CrossRefADSGoogle Scholar
  22. Suzuki, T.K., Inutsuka, S.-I.: 2006, J. Geophys. Res. 111, A06101. CrossRefGoogle Scholar
  23. Tu, C.-Y., Marsch, E.: 1997, Solar Phys. 171, 363. CrossRefADSGoogle Scholar
  24. Tu, C.-Y., Zhou, C., Marsch, E., Xia, L.-D., Zhao, L., Wang, J.-X., Wilhelm, K.: 2005a, Science 308, 519. CrossRefADSGoogle Scholar
  25. Tu, C.-Y., Zhou, C., Marsch, E., Wilhelm, K., Xia, L.-D., Zhao, L., Wang, J.-X.: 2005b, Astrophys. J. Lett. 624, L133. CrossRefADSGoogle Scholar
  26. Tu, C.-Y., Zhou, C., Marsch, E., Wilhelm, K., Xia, L.-D., Zhao, L., Wang, J.-X.: 2005c, In: Lacoste, H. (ed.) Connecting Sun and Heliosphere, Proc. Solar Wind 11 / SOHO 16 SP-592, ESA, Noordwijk, 131. Google Scholar
  27. Whang, Y.-C., Chang, C.-C.: 1965, J. Geophys. Res. 70, 4175. zbMATHCrossRefADSGoogle Scholar
  28. Wilhelm, K., Marsch, E., Dwivedi, B.N., Hassler, D.M., Lemaire, P., Gabriel, A.H., Huber, M.C.E.: 1998, Astrophys. J. 500, 1023. CrossRefADSGoogle Scholar
  29. Wilhelm, K., Dammasch, I.E., Marsch, E., Hassler, D.M.: 2000, Astron. Astrophys. 353, 749. ADSGoogle Scholar
  30. Xia, L.-D., Marsch, E., Curdt, W.: 2003, Astron. Astrophys. 399, L5. CrossRefADSGoogle Scholar
  31. Zhang, J., Ma, J., Wang, H.-M.: 2006, Astrophys. J. 649, 464. CrossRefADSGoogle Scholar
  32. Zhang, J., Lin, G.-H., Wang, J.-X., Wang, H.-M., Zirin, H.: 1998a, Solar. Phys. 178, 245. CrossRefADSGoogle Scholar
  33. Zhang, J., Lin, G.-H., Wang, J.-X., Wang, H.-M., Zirin, H.: 1998b, Astron. Astrophys. 338, 322. ADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.School of Earth and Space SciencesPeking UniversityBeijingChina
  2. 2.Max-Planck-Institut für SonnensystemforschungKatlenburg-LindauGermany

Personalised recommendations