Solar Physics

, Volume 249, Issue 1, pp 103–120 | Cite as

Forecasting the Time Series of Sunspot Numbers

Article

Abstract

Forecasting the solar cycle is of great importance for weather prediction and environmental monitoring, and also constitutes a difficult scientific benchmark in nonlinear dynamical modeling. This paper describes the identification of a model and its use in the forecasting the time series comprised of Wolf’s sunspot numbers. A key feature of this procedure is that the original time series is first transformed into a symmetrical space where the dynamics of the solar dynamo are unfolded in a better way, thus improving the model. The nonlinear model obtained is parsimonious and has both deterministic and stochastic parts. Monte Carlo simulation of the whole model produces very consistent results with the deterministic part of the model but allows for the determination of confidence bands. The obtained model was used to predict cycles 24 and 25, although the forecast of the latter is seen as a crude approximation, given the long prediction horizon required. As for the 24th cycle, two estimates were obtained with peaks of 65±16 and of 87±13 units of sunspot numbers. The simulated results suggest that the 24th cycle will be shorter and less active than the preceding one.

Keywords

Forecasting solar activity Sunspot numbers Nonlinear models Prediction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aguirre, L.A.: 1995, A nonlinear correlation function for selecting the delay time in dynamical reconstructions. Phys. Lett. A 203(2 – 3), 88 – 94. CrossRefADSGoogle Scholar
  2. Aguirre, L.A., Billings, S.A.: 1995, Retrieving dynamical invariants from chaotic data using NARMAX models. Int. J. Bifurc. Chaos 5(2), 449 – 474. MATHCrossRefGoogle Scholar
  3. Aguirre, L.A., Letellier, C.: 2005, Observability of multivariable differential embeddings. J. Phys. A: Math. Gen. 38, 6311 – 6326. MATHCrossRefMathSciNetGoogle Scholar
  4. Aguirre, L.A., Mendes, E.M.A.M.: 1996, Nonlinear polynomial models: structure, term clusters and fixed points. Int. J. Bifurc. Chaos 6(2), 279 – 294. MATHCrossRefMathSciNetGoogle Scholar
  5. Aguirre, L.A., Rodrigues, G.G., Mendes, E.M.A.M.: 1997, Nonlinear identification and cluster analysis of chaotic attractors from a real implementation of Chua’s circuit. Int. J. Bifurc. Chaos 7(6), 1411 – 1423. MATHCrossRefGoogle Scholar
  6. Aguirre, L.A., Barros, V.C., Souza, A.V.P.: 1999, Nonlinear multivariable modeling and analysis of sleep apnea time series. Comput. Biol. Med. 29(3), 207 – 228. CrossRefGoogle Scholar
  7. Aguirre, L.A., Furtado, E.C., Tôrres, L.A.B.: 2006, Evaluation of dynamical models: Dissipative synchronization and other techniques. Phys. Rev. E 74, 019612. CrossRefGoogle Scholar
  8. Aguirre, L.A., Rodrigues, D.D., Lima, S.T., Martinez, C.B.: 2008, Dynamical prediction and pattern mapping in short term load-forecasting. Electr. Power Energy Syst. 30, 73 – 82. CrossRefGoogle Scholar
  9. Attia, A.F., Abdel-Hamid, R., Quassim, M.: 2005, Prediction of solar activity based on neuro-fuzzy modeling. Solar Phys. 227, 177 – 191. CrossRefADSGoogle Scholar
  10. Barkhatov, N.A., Korolev, A.V., Ponomarev, S.M., Sakharov, S.Y.: 2001, Long-term forecasting of solar activity indices using neural networks. Radiophys. Quantum Electron. 44(9), 742 – 749. CrossRefGoogle Scholar
  11. Billings, S.A., Chen, S., Korenberg, M.J.: 1989, Identification of MIMO nonlinear systems using a forward-regression orthogonal estimator. Int. J. Control 49(6), 2157 – 2189. MATHMathSciNetGoogle Scholar
  12. Bracewell, R.N.: 1953, The sunspot number series. Nature 171, 649 – 650. CrossRefADSGoogle Scholar
  13. Buchler, J.R., Kolláth, Z., Cadmus, R.R., Jr.: 2004, Evidence for low-dimensional chaos in semiregular variable stars. Astrophys. J. 613, 532 – 547. CrossRefADSGoogle Scholar
  14. Cameron, R., Schüssler, M.: 2007, Solar cycle prediction using precursors and flux transport models. Astrophys. J. 659, 801 – 811. CrossRefADSGoogle Scholar
  15. Carbonell, M., Oliver, R., Ballester, J.L.: 1994, A search for chaotic behavior in solar activity. Astron. Astrophys. 290(3), 983 – 994. ADSGoogle Scholar
  16. Chen, S., Billings, S.A., Luo, W.: 1989, Orthogonal least squares methods and their application to nonlinear system identification. Int. J. Control 50(5), 1873 – 1896. MATHCrossRefMathSciNetGoogle Scholar
  17. Choudhuri, A.R., Chatterjee, P., Jiang, J.: 2007, Predicting solar cycle 24 with a solar dynamo model. Phys. Rev. Lett. 98(5), 131103. CrossRefADSGoogle Scholar
  18. De Meyer, F.: 2003, A transfer function model for the sunspot cycle. Solar Phys. 217, 349 – 366. CrossRefADSGoogle Scholar
  19. Duhau, S.: 2003, An early prediction of maximum sunspot number in solar cycle 24. Solar Phys. 213, 203 – 212. CrossRefADSGoogle Scholar
  20. Eddy, J.A.: 1976, The Maunder minimum. Science 192, 1189 – 1202. CrossRefADSGoogle Scholar
  21. Gholipour, A., Lucas, C., Araabi, B.N., Shafiee, M.: 2005, Solar activity forecast: Spectral analysis and neurofuzzy prediction. J. Atmos. Solar-Terr. Phys. 67, 595 – 603. CrossRefADSGoogle Scholar
  22. Gilmore, R., Lefranc, M.: 2002, The Topology of Chaos, Wiley Interscience, New York. MATHGoogle Scholar
  23. Gilmore, R., Letellier, C.: 2007, The Symmetry of Chaos, Oxford University Press, New York. MATHGoogle Scholar
  24. Hathaway, D.H., Wilson, R.M., Reichmann, E.J.: 1994, The shape of the sunspot cycle. Solar Phys. 151, 177 – 190. CrossRefADSGoogle Scholar
  25. Hoyt, D.V., Schatten, K.H.: 1998, Group sunspot numbers: a new solar activity reconstruction. Solar Phys. 179, 189 – 219. CrossRefADSGoogle Scholar
  26. Kremliovsky, M.N.: 1994, Can we understand time scales of solar activity? Solar Phys. 151, 351 – 370. CrossRefADSGoogle Scholar
  27. Kremliovsky, M.N.: 1995, Limits of predictability of solar activity. Solar Phys. 159, 371 – 380. CrossRefADSGoogle Scholar
  28. Lainscsek, C.S.M., Schürrer, F., Kadtke, J.: 1998, A general form for global dynamical data models for three-dimensional systems. Int. J. Bifurc. Chaos 8(5), 899 – 914. MATHCrossRefGoogle Scholar
  29. Letellier, C., Gilmore, R.: 2001, Covering dynamical systems: Two-fold covers. Phys. Rev. E 63, 016206. CrossRefADSMathSciNetGoogle Scholar
  30. Letellier, C., Malasoma, J.M.: 2001, Unimodal order in the image of the simplest equivariant jerk system. Phys. Rev. E 64, 067202. CrossRefADSGoogle Scholar
  31. Letellier, C., Dutertre, P., Maheu, B.: 1995, Unstable periodic orbits and templates of the Rössler system: Toward a systematic topological characterization. Chaos 5(1), 271 – 282. CrossRefADSGoogle Scholar
  32. Letellier, C., Le Sceller, L., Dutertre, P., Gouesbet, G., Fei, Z., Hudson, J.L.: 1995, Topological characterization and global vector field reconstruction from an experimental electrochemical system. J. Phys. Chem. A 99, 7016 – 7027. CrossRefGoogle Scholar
  33. Letellier, C., Dutertre, P., Reizner, J., Gouesbet, G.: 1996, Evolution of multimodal map induced by an equivariant vector field. J. Phys. A 29, 5359 – 5373. MATHCrossRefADSMathSciNetGoogle Scholar
  34. Letellier, C., Maquet, J., Labro, H., Le Sceller, L., Gouesbet, G., Arnéodo, A.: 1998, Analyzing chaotic behaviour in a belousov-zhabotinskii reaction by using a global vector field reconstruction. J. Phys. Chem. A 102, 10265 – 10273. CrossRefGoogle Scholar
  35. Letellier, C., Aguirre, L.A., Maquet, J., Gilmore, R.: 2006, Evidence for low dimensional chaos in sunspot cycles. Astron. Astrophys. 449, 379 – 387. CrossRefADSGoogle Scholar
  36. Li, K.J.: 1999, The shape of the sunspot cycle described by sunspot areas. Astron. Astrophys. 345, 1006 – 1010. ADSGoogle Scholar
  37. Li, Q.X., Li, K.J.: 2007, Low dimensional chaos from the group sunspot numbers. Chin. J. Astron. Astrophys. 7(3), 435 – 440. CrossRefADSGoogle Scholar
  38. Li, K.J., Yun, H.S., Gu, X.M.: 2001, On long-term predictions of the maximum sunspot numbers of solar cycles 21 to 23. Astron. Astrophys. 368, 285 – 291. CrossRefADSGoogle Scholar
  39. Makarenko, N.G., Karimova, L.M., Novak, M.M.: 2007, Investigation of global solar magnetic field by computational topology methods. Physica A 380, 98 – 108. CrossRefADSGoogle Scholar
  40. Mindlin, G.B., Gilmore, R.: 1992, Topological analysis and synthesis of chaotic time series. Physica D 58, 229 – 242. CrossRefADSMathSciNetGoogle Scholar
  41. Mininni, P.D., Gómez, D.O., Mindlin, G.B.: 2000, Stochastic relaxation oscillator model for the solar cycle. Phys. Rev. Lett. 85(25), 5476 – 5479. CrossRefADSGoogle Scholar
  42. Moroz, I., Letellier, C., Gilmore, R.: 2007, When are projections also embeddings? Phys. Rev. E 75, 046201. ADSMathSciNetGoogle Scholar
  43. Nikonova, M.V., Klochek, N.V., Smolkov, G.Y.: 2000, Forecasting the solar activity using the nonlinear spectral model. Adv. Space Res. 26(1), 183 – 186. CrossRefADSGoogle Scholar
  44. Ogurtsov, M.G.: 2005, On the possibility of forecasting the sun’s activity using radiocarbon solar proxy. Solar Phys. 231, 167 – 176. CrossRefADSGoogle Scholar
  45. Orfila, A., Ballester, J.L., Oliver, R., Alvarez, A., Tintoré, J.: 2002, Evidence for low dimensional chaos in sunspot cycles. Astron. Astrophys. 386, 313 – 318. CrossRefADSGoogle Scholar
  46. Qin, Z.: 1998, The transitional time scale from stochastic to chaotic behavior for solar activity. Solar Phys. 178, 423 – 431. CrossRefADSGoogle Scholar
  47. Schatten, K.: 2003, Long-range solar activity predictions: a reprieve from cycle # 24’s activity. In: Flight Mechanics Symposium. NASA Goddard Space Flight Center, Greenbelt, 1 – 11. Google Scholar
  48. Sello, S.: 2001, Solar cycle forecasting: A nonlinear dynamics approach. Astron. Astrophys. 377, 312 – 320. CrossRefADSGoogle Scholar
  49. Sello, S.: 2003, Solar cycle activity: A preliminary prediction for cycle #24. Astron. Astrophys. 410, 691 – 693. CrossRefADSGoogle Scholar
  50. Svalgaard, L., Cliver, E.W., Kamide, Y.: 2005, Sunspot cycle 24: Smallest cycle in 100 years? Geophys. Res. Lett. 32, L01104. CrossRefGoogle Scholar
  51. Tsirulnik, L.B., Kuznetsova, T.V., Oraevsky, V.N.: 1997, Forecasting the 23rd and 24th solar cycles on the basis of MGM spectrum. Adv. Space Res. 20(12), 2369 – 2372. CrossRefADSGoogle Scholar
  52. Tufillaro, N.B., Wyckoff, P., Brown, R., Schreiber, T., Molteno, T.: 1995, Topological time-series analysis of a string experiment and its synchronized model. Phys. Rev. E 51(1), 164 – 174. CrossRefADSGoogle Scholar
  53. Wolf, R.: 1852, Sunspot epochs since A.D. 1610: The periodic return of sunspot minima. Acad. Sci. C. R. 35, 704 – 705. Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Departamento de Engenharia EletrônicaUniversidade Federal de Minas GeraisBelo HorizonteBrazil
  2. 2.CORIA/CNRS UMR 6614Université et INSA de RouenSaint-Etienne du Rouvray cedexFrance

Personalised recommendations