Solar Physics

, Volume 248, Issue 1, pp 29–50 | Cite as

Topological Departures from Translational Invariance along a Filament Observed by THEMIS

  • J. DudíkEmail author
  • G. Aulanier
  • B. Schmieder
  • V. Bommier
  • T. Roudier


We study the topology of the 3D magnetic field in a filament channel to address the following questions: Is a filament always formed in a single flux tube? How does the photospheric magnetic field lead to filament interruptions and to feet formation? What is the relation between feet-related field lines and the parasitic polarities? What can topological analyses teach us about EUV filament channels? To do so, we consider a filament observed on 6 October 2004 with THEMIS/MTR, in Hα with the full line profile simultaneously and cospatially with its photospheric vector magnetic field. The coronal magnetic field was calculated from a “linear magnetohydrostatic” extrapolation of a composite THEMIS-MDI magnetogram. Its free parameters were adjusted to get the best match possible between the distribution of modeled plasma-supporting dips and the Hα filament morphology. The model results in moderate plasma β≤1 at low altitudes in the filament, in conjunction with non-negligible departures from force-freeness measured by various metrics. The filament here is formed by a split flux tube. One part of the flux tube is rooted in the photosphere aside an observed interruption in the filament. This splitted topology is due to strong network polarities on the edge of the filament channel, not to flux concentrations closer to the filament. We focus our study to the northwest portion of the filament. The related flux tube is highly fragmented at low altitudes. This fragmentation is due to small flux concentrations of two types. First, some locally distort the tube, leading to noticeable thickness variations along the filament body. Second, parasitic polarities, associated with filament feet, result in secondary dips above the related local inversion line. These dips belong to long field lines that pass below the flux tube. Many of these field lines are not rooted near the related foot. Finally, the present model shows that the coronal void interpretation cannot be ruled out to interpret the wideness of EUV filament channels.


Magnetic field: photosphere, models Prominences: magnetic fields, models 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anzer, U., Heinzel, P.: 2003, Astron. Astrophys. 404, 1139. CrossRefADSGoogle Scholar
  2. Anzer, U., Heinzel, P.: 2005, Astrophys. J. 622, 714. CrossRefADSGoogle Scholar
  3. Anzer, U., Heinzel, P.: 2007, Astron. Astrophys. 467, 1285. CrossRefADSGoogle Scholar
  4. Aulanier, G., Démoulin, P.: 1998, Astron. Astrophys. 329, 1125. ADSGoogle Scholar
  5. Aulanier, G., Schmieder, B.: 2002, Astron. Astrophys. 386, 1106. CrossRefADSGoogle Scholar
  6. Aulanier, G., Srivastava, N., Martin, S.F.: 2000, Astrophys. J. 543, 447. CrossRefADSGoogle Scholar
  7. Aulanier, G., Démoulin, P., van Driel-Gesztelyi, L., Mein, P., DeForest, C.: 1998, Astron. Astrophys. 335, 309. ADSGoogle Scholar
  8. Aulanier, G., Démoulin, P., Mein, N., van Driel-Gesztelyi, L., Mein, P., Schmieder, B.: 1999, Astron. Astrophys. 342, 867. ADSGoogle Scholar
  9. Berlicki, A., Mein, P., Schmieder, B.: 2006, Astron. Astrophys. 445, 1127. CrossRefADSGoogle Scholar
  10. Bommier, V., Leroy, J.-L.: 1998, In: Webb, D., Schmieder, B., Rust, D. (eds.) New Perspectives on Solar Prominences, IAU Colloq. 167 CS-150, Astron. Soc. Pac., San Francisko, 434. Google Scholar
  11. Bommier, V., Landi Degl’Innocenti, E., Landolfi, M., Molodij, G.: 2007, Astron. Astrophys. 445, 1127. Google Scholar
  12. Démoulin, P., Bagalá, L.G., Mandrini, C.H., Hénoux, J.C., Rovira, M.G.: 1997, Astron. Astrophys. 325, 305. ADSGoogle Scholar
  13. DeVore, C.R., Antiochos, S.K., Aulanier, G.: 2005, Astrophys. J. 629, 1122. CrossRefADSGoogle Scholar
  14. Dunn, R.B.: 1960, Ph.D. Thesis, Harvard University. Google Scholar
  15. Filippov, B.P.: 1998, In: Webb, D., Schmieder, B., Rust, D. (eds.) New Perspectives on Solar Prominences, IAU Colloq. 167 CS-150, Astron. Soc. Pac., San Francisko, 94. Google Scholar
  16. Gary, G.A.: 1989, Astrophys. J. Suppl. Ser. 69, 323. CrossRefADSGoogle Scholar
  17. Hammerschlag, R.H., Bettonvil, F.C.M.: 1998, New Astron. Rev. 42, 485. CrossRefADSGoogle Scholar
  18. Handy, B.N., Acton, L.W., Kankelborg, C.C., Wolfson, C.J., Akin, D.J., Bruner, M.E., et al.: 1999, Solar Phys. 187, 229. CrossRefADSGoogle Scholar
  19. Heinzel, P., Anzer, U.: 2006, Astrophys. J. 643, 65. CrossRefADSGoogle Scholar
  20. Heinzel, P., Schmieder, B., Tziotziou, K.: 2001, Astrophys. J. 561, 223. CrossRefADSGoogle Scholar
  21. Heinzel, P., Anzer, U., Schmieder, B.: 2003, Solar Phys. 216, 159. CrossRefADSGoogle Scholar
  22. Landolfi, M., Landi Degl’Innocenti, E., Arena, P.: 1984, Solar Phys. 93, 269. CrossRefADSGoogle Scholar
  23. Lionello, R., Mikić, Z., Linker, J.A., Amari, T.: 2002, Astrophys. J. 581, 718. CrossRefADSGoogle Scholar
  24. Leroy, J.-L.: 1977, Astron. Astrophys. 60, 79. ADSGoogle Scholar
  25. Lin, Y., Engvold, O., Wiik, J.E.: 2003, Solar Phys. 216, 109. CrossRefADSGoogle Scholar
  26. Lin, Y., Engvold, O., van der Voort, L.R., Wiik, J.E., Berger, T.E.: 2005, Solar Phys. 226, 239. CrossRefADSGoogle Scholar
  27. López Ariste, A., Rayrole, J., Semel, M.: 2000, Astron. Astrophys. Suppl. Ser. 142, 137. CrossRefADSGoogle Scholar
  28. López Ariste, A., Aulanier, G., Schmieder, B., Sainz Dalda, A.: 2006, Astron. Astrophys. 456, 725. CrossRefADSGoogle Scholar
  29. Low, B.C.: 1991, Astrophys. J. 370, 427. CrossRefADSGoogle Scholar
  30. Low, B.C.: 1992, Astrophys. J. 399, 300. CrossRefADSGoogle Scholar
  31. Martens, P.C., Zwaan, C.: 2001, Astrophys. J. 558, 872. CrossRefADSGoogle Scholar
  32. Martin, S.F.: 1998, In: Webb, D., Schmieder, B., Rust, D. (eds.) New Perspectives on Solar Prominences, IAU Colloq. 167, CS-150, Astron. Soc. Pac., San Francisko, 419. Google Scholar
  33. Martin, S.F., Echols, C.R.: 1994, In: Rutten, R.J., Schrijver, C.J. (eds.) Solar Surface Magnetism, Kluwer Academic, Dordrecht, 339. Google Scholar
  34. Mein, N., Schmieder, B., DeLuca, E.E., Heinzel, P., Mein, P., Malherbe, J.M., Staiger, J.: 2001, Astrophys. J. 556, 438. CrossRefADSGoogle Scholar
  35. Metcalf, T.R., DeRosa, M.L., Schrijver, C.J., Barnes, G., van Ballegooijen, A.A., Wiegelmann, T., et al.: 2008, Solar Phys. 247, 269. CrossRefADSGoogle Scholar
  36. November, L.J., Koutchmy, S.: 1996, Astrophys. J. 466, 512. CrossRefADSGoogle Scholar
  37. Priest, E.R.: 1989, In: Priest, E.R. (ed.) Dynamics and Structure of Quiescent Prominences, Kluwer Academic, Dordrecht, 1. Google Scholar
  38. Priest, E.R., Démoulin, P.: 1995, J. Geophys. Res. 100, 23443. CrossRefADSGoogle Scholar
  39. Régnier, S., Amari, T.: 2004, Astron. Astrophys. 425, 345. CrossRefADSGoogle Scholar
  40. Rondi, S., Roudier, T., Molodij, G., Bommier, V., Keil, S., Sütterlin, P., Malherbe, J.M., Meunier, N., Schmieder, S., Maloney, P.: 2007, Astron. Astrophys. 467, 1289. CrossRefADSGoogle Scholar
  41. Rutten, R.J., Hammerschlag, R.F., Bettonvil, F.C.M., Sütterlin, P., de Wijn, A.G.: 2004, Astron. Astrophys. 413, 1183. CrossRefADSGoogle Scholar
  42. Scherrer, P.H., Bogart, R.S., Bush, R.I., Hoeksema, J.T., Kosovichev, A.G., Schou, J., et al.: 1995, Solar Phys. 162, 129. CrossRefADSGoogle Scholar
  43. Schmieder, B., Raadu, M.A., Wiik, J.E.: 1991, Astron. Astrophys. 252, 353. ADSGoogle Scholar
  44. Schmieder, B., Tziotziou, K., Heinzel, P.: 2003, Astron. Astrophys. 401, 361. CrossRefADSGoogle Scholar
  45. Schmieder, B., Lin, Y., Heinzel, P., Schwartz, P.: 2004, Solar Phys. 221, 297. CrossRefADSGoogle Scholar
  46. Schmieder, B., Aulanier, G., Mein, P., López Ariste, A.: 2006, Solar Phys. 238, 245. CrossRefADSGoogle Scholar
  47. Schwartz, P., Heinzel, P., Anzer, U., Schmieder, B.: 2004, Astron. Astrophys. 421, 323. CrossRefADSGoogle Scholar
  48. Schrijver, C.J., Derosa, M.L., Metcalf, T.R., Liu, Y., McTiernan, J., Régnier, S., Valori, G., Wheatland, M.S., Wiegelmann, T.: 2006, Solar Phys. 235, 161. CrossRefADSGoogle Scholar
  49. Skumanich, A., Lites, B.W.: 1987, Astrophys. J. 322, 473. CrossRefADSGoogle Scholar
  50. van Ballegooijen, A.A.: 2004, Astrophys. J. 615, 519. CrossRefGoogle Scholar
  51. Wang, Y.-M.: 2001, Astrophys. J. 560, 456. CrossRefADSGoogle Scholar
  52. Welsch, B.T., DeVore, C.R., Antiochos, S.K.: 2005, Astrophys. J. 634, 1395. CrossRefADSGoogle Scholar
  53. Wheatland, M.S., Sturrock, P.A., Roumeliotis, G.: 2000, Astrophys. J. 540, 1150. CrossRefADSGoogle Scholar
  54. Wiik, J.E., Schmieder, B., Noëns, J.C.: 1994, Solar Phys. 149, 51. CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • J. Dudík
    • 1
    • 2
    Email author
  • G. Aulanier
    • 2
  • B. Schmieder
    • 2
  • V. Bommier
    • 3
  • T. Roudier
    • 4
  1. 1.Department of Astronomy, Physics of the Earth and Meteorology, Faculty of Mathematics, Physics and InformaticsComenius UniversityBratislavaSlovakia
  2. 2.LESIA, Observatoire de Paris, CNRS, UPMCUniversité Paris DiderotMeudonFrance
  3. 3.LERMA, Observatoire de Paris, CNRS, UPMC, UCP, ENSMeudonFrance
  4. 4.Laboratoire d’Astrophysique de l’Observatoire Midi-PyrénéesUniversité Paul Sabatier Toulouse III, NDRSTarbesFrance

Personalised recommendations