Solar Physics

, Volume 248, Issue 1, pp 203–209 | Cite as

Prediction of Solar Cycle Maximum Using Solar Cycle Lengths

  • R. P. KaneEmail author


If the rise time RT, fall time FT, and total time TT (i.e., RT+FT) of a solar cycle are compared against the maximum amplitude Rz(max ) for the following cycle, then only the association between TT and Rz(max ) is inferred to be well anticorrelated, inferring that the larger (smaller) the value of Rz(max ) for the following cycle, the shorter (longer) the TT of the preceding cycle. Although the inferred correlation (−0.68) is statistically significant, the inferred standard error of estimate is quite large, so predictions using the inferred correlation are not very precise. Removal of cycle pairs 15/16, 19/20, and 20/21 (statistical outliers) yields a regression that is highly statistically significant (−0.85) and reduces the standard error of estimate by 18%. On the basis of the adjusted regression and presuming TT=140 months for cycle 23, the present ongoing cycle, cycle 24’s 90% prediction interval for Rz(max ) is estimated to be about 94±44, inferring only a 5% probability that its Rz(max ) will be larger than about 140, unless of course cycle pair 23/24 is a statistical outlier.


Solar Cycle Solar Phys Sunspot Number Fall Time Sunspot Cycle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Chernosky, E.J.: 1954, Publ. Astron. Soc. Pac. 66, 241. CrossRefADSGoogle Scholar
  2. Clilverd, M., Clark, E., Ulich, T., Linthe, J., Rishbeth, H.: 2004, In: 35th COSPAR, Scientific Assembly, Paris, France, 2011. Google Scholar
  3. Dikpati, M., de Toma, G., Gilman, P.A.: 2006, Geophys. Res. Lett. 33, L05102. doi: 10.1029/2005GL025221. CrossRefGoogle Scholar
  4. Friis-Christensen, E., Lassen, K.: 1991, Science 254, 698. CrossRefADSGoogle Scholar
  5. Hathaway, D.H., Wilson, R.M.: 2005, Solar Phys. 224, 5. CrossRefADSGoogle Scholar
  6. Hathaway, D.H., Wilson, R.M.: 2006, Geophys. Res. Lett. 33, L18101. doi: 10.1029/2006GL027053. CrossRefADSGoogle Scholar
  7. Hathaway, D.H., Wilson, R.M., Reichmann, E.J.: 1994, Solar Phys. 151, 177. CrossRefADSGoogle Scholar
  8. Hathaway, D.H., Wilson, R.M., Reichmann, E.J.: 2002, Solar Phys. 211, 357. CrossRefADSGoogle Scholar
  9. Joselyn, J.A., Anderson, J.B., Coffey, H., Harvey, K., Hathaway, D., Heckman, G., Hildner, E., Mende, W., Schatten, K., Thompson, R., Thomson, A.W.P., White, O.R.: 1997, Eos. Trans. AGU 78, 205. CrossRefADSGoogle Scholar
  10. Kane, R.P.: 2007, Solar Phys. 243, 205. CrossRefADSGoogle Scholar
  11. McKinnon, J.A.: 1987 UAG Report 95, pp. 112, NOAA Boulder, Colorado, USA. Google Scholar
  12. Obridko, V.N., Oraevsky, V.N., Allen, J.H.: 1994, In: Baker, D.N., Papitashvilli, V.O. (eds.) COSPAR Colloquia Series 5, Pergamon Press, Elmsford, 557. Google Scholar
  13. Ohl, A.I.: 1966, Soln. Dannye 12, 84. Google Scholar
  14. Ohl, A.I.: 1976, Soln. Dannye 9, 73. ADSGoogle Scholar
  15. Schatten, K.: 2005, Geophys. Res. Lett. 32, L21106. doi: 10.1029/2005GL021664. CrossRefADSGoogle Scholar
  16. Svalgaard, L., Cliver, E.W., Kamide, Y.: 2005, Geophys. Res. Lett. 32. doi: 10.1029/2004GL021664.
  17. Waldmeier, M.: 1955, Ergebnisse und Probleme der Sonnenforschung, 2nd edn. Leipzig. 154. Google Scholar
  18. Waldmeier, M.: 1961, The Sunspot-Activity in the Years 1610–1960, Schulthess & Co. AG, Zurich. Google Scholar
  19. Wilson, R.M., Hathaway, D.H.: 2007, NASA/ TP-2007-215134, November 2007. Google Scholar
  20. Wilson, R.M., Hathaway, D.H., Reichmann, E.J.: 1996, NASA/ TP-1996-3648, August 1996. Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Instituto Nacional de Pesquisas EspaciasSão Jose dos CamposBrazil

Personalised recommendations