Advertisement

Solar Physics

, Volume 248, Issue 1, pp 125–139 | Cite as

Average Thickness of Magnetosheath Upstream of Magnetic Clouds at 1 AU versus Solar Longitude of Source

  • R. P. LeppingEmail author
  • C.-C. Wu
  • N. Gopalswamy
  • D. B. Berdichevsky
Open Access
Article

Abstract

Starting with a large number (N=100) of Wind magnetic clouds (MCs) and applying necessary restrictions, we find a proper set of N=29 to investigate the average ecliptic plane projection of the upstream magnetosheath thickness as a function of the longitude of the solar source of the MCs, for those cases of MCs having upstream shock waves. A few of the obvious restrictions on the full set of MCs are the need for there to exist a driven upstream shock wave, knowledge of the MC’s solar source, and restriction to only MCs of low axial latitudes. The analysis required splitting this set into two subsets according to average magnetosheath speed: slow/average (300 – 500 km s−1) and fast (500 – 1100 km s−1) speeds. Only the fast set gives plausible results, where the estimated magnetosheath thickness (ΔS) goes from 0.042 to 0.079 AU (at 1 AU) over the longitude sector of 0° (adjusted source-center longitude of the average magnetic cloud) to 40° off center (East or West), based on N=11 appropriate cases. These estimates are well determined with a sigma (σ) for the fit of 0.0055 AU, where σ is effectively the same as \(\sqrt{}\) (chi-squared) for the appropriate quadratic fit. The associated linear correlation coefficient for ΔS versus |Longitude| was very good (c.c.=0.93) for the fast range, and ΔS at 60° longitude is extrapolated to be 2.7 times the value at 0°. For the slower speeds we obtain the surprising result that ΔS is typically more-or-less constant at 0.040±0.013 AU at all longitudes, indicating that the MC as a driver, when moving close to the normal solar wind speed, has little influence on magnetosheath thickness. In some cases, the correct choice between two candidate solar-source longitudes for a fast MC might be made by noting the value of the observed ΔS just upstream of the MC. Also, we point out that, for the 29 events, the average sheath speed was well correlated with the quantity ΔV[=(〈V MC〉−〈V UPSTREAM〉)], and also with both 〈V MC〉 and 〈V MC,T〉, where 〈V MC〉 is the first one-hour average of the MC speed, 〈V MC,T〉 is the average MC speed across the full MC, and 〈V UPSTREAM〉 is a five-hour average of the solar wind speed just upstream of the shock.

Keywords

Magnetic clouds Solar wind Shock waves Magnetosheath 

References

  1. Badruddin, M., Venkatesan, D., Zhu, B.Y.: 1991, Solar Phys. 134, 203 – 209. CrossRefADSGoogle Scholar
  2. Berdichevsky, D.B., Richardson, I.G., Lepping, R.P., Martin, S.F.: 2005, J. Geophys. Res. 110, A09105. doi: 10.1029/2004JA010662. CrossRefGoogle Scholar
  3. Burlaga, L.F.: 1988, J. Geophys. Res. 93, 7217 – 7224. CrossRefADSGoogle Scholar
  4. Burlaga, L.F.: 1995, Interplanetary Magnetohydrodynamics, Oxford Univ. Press, New York, 89 – 114. Google Scholar
  5. Burlaga, L.F., Sittler, E.C. Jr., Mariani, F., Schwenn, R.: 1981, J. Geophys. Res. 86, 6673 – 6684. CrossRefADSGoogle Scholar
  6. Fairfield, D.H.: 1971, J. Geophys. Res. 76, 6700 – 6616. CrossRefADSGoogle Scholar
  7. Gopalswamy, N.: 2006, Space Sci. Rev. 124, 145 – 168. CrossRefADSGoogle Scholar
  8. Gopalswamy, N., Akiyama, S., Yashiro, S., Michalek, G., Lepping, R.P.: 2007, J. Atmos. Space-Terr. Phys. 70(2–4), 245 – 253. doi: 10.1016/j.jastp.2007.08.070. ADSGoogle Scholar
  9. Gosling, J.T., McComas, D.J.: 1987, Geophys. Res. Lett. 14, 355 – 358. CrossRefADSGoogle Scholar
  10. Klein, L., Burlaga, L.F.: 1982, J. Geophys. Res. 87, 613 – 624. CrossRefADSGoogle Scholar
  11. Lepping, R.P., Berdichevsky, D.: 2000, Recent Res. Devel. Geophys. 3, 77 – 96. Google Scholar
  12. Lepping, R.P., Jones, J.A., Burlaga, L.F.: 1990, J. Geophys. Res. 95, 11957 – 11965. CrossRefADSGoogle Scholar
  13. Lepping, R.P., Wu, C.-C., Berdichevsky, D.B.: 2005, Ann. Geophys. 23, 2687 – 2704. Sref-ID: 1432-0576/ag/2005-23-2687. ADSGoogle Scholar
  14. Lepping, R.P., Burlaga, L.F., Tsurutani, B.T., Ogilvie, K.W., Lazarus, A.J., Evans, D.S., Klein, L.W.: 1991, J. Geophys. Res. 96, 9425 – 9438. CrossRefADSGoogle Scholar
  15. Lepping, R.P., Berdichevsky, D., Szabo, A., Lazarus, A.J., Thompson, B.J.: 2002. In: Lyu, L.-H. (ed.) Space Weather Study Using Multipoint Techniques, Proceedings of the COSPAR Colloquium in Pacific Green Bay, Taiwan, 27 – 29 September 2000, Pergamon, Oxford, 87 – 96. CrossRefGoogle Scholar
  16. Lepping, R.P., Berdichevsky, D.B., Wu, C.-C., Szabo, A., Narock, T., Mariani, F., Lazarus, A.J., Quivers, A.: 2006, Ann. Geophys. 24(#1), 215 – 245. Sref-ID: 1432-0576/ag/2006-24-215. ADSCrossRefGoogle Scholar
  17. Liu, Y., Richardson, J.D., Belcher, J.W., Kasper, J.C., Skoug, R.M.: 2006a, J. Geophys. Res. 111, A09108. doi: 10.1029/2006JA011723. CrossRefGoogle Scholar
  18. Liu, Y., Richardson, J.D., Belcher, J.W., Wang, C., Hu, Q., Kasper, J.C.: 2006b, J. Geophys. Res. 111, A12S03. doi: 10.1029/2006JA011890. CrossRefGoogle Scholar
  19. Marubashi, K.: 1986, Adv. Space Res. 6(6), 335 – 338. CrossRefADSGoogle Scholar
  20. Marubashi, K.: 1997, In: Crooker, N., Joselyn, J., Feynman, J. (eds.) Geophys. Monogr. Ser. 99, AGU, Washington, 147 – 156. Google Scholar
  21. McComas, D.J., Gosling, J.T., Winterhalter, D., Smith, E.J.: 1988, J. Geophys. Res. 93, 2519 – 2526. CrossRefADSGoogle Scholar
  22. Morrison, P.: 1956, Phys. Rev. 101(#4), 1397 – 1404. CrossRefADSGoogle Scholar
  23. Owens, M.J., Cargill, P.J., Pagel, C., Siscoe, G.L., Crooker, N.U.: 2005, J. Geophys. Res. 110, A01105. doi: 10.1029/2004JA010814. CrossRefGoogle Scholar
  24. Riley, P., Crooker, N.U.: 2004, Astrophys. J. 600, 1035 – 1042. CrossRefADSGoogle Scholar
  25. Spreiter, J.R.: 1975, In: Ness, N.F. (ed.) NASA-Goddard Space Flight Center, Internal Document, Moscow, USSR, Nov. 17 – 21, 1975, NASA-SP-397, 135 – 149. Google Scholar
  26. Spreiter, J.R., Summers, A.L., Alksne, A.Y.: 1966, Planet. Space Sci. 14, 223 – 253. CrossRefADSGoogle Scholar
  27. Russell, C.T., Mulligan, T.: 2002a, Planet. Space Sci. 50, 527 – 534. CrossRefADSGoogle Scholar
  28. Russell, C.T., Mulligan, T.: 2002b, Adv. Space Res. 29(#3), 301 – 306. CrossRefADSGoogle Scholar
  29. Webb, D.F., Lepping, R.P., Burlaga, L.F., DeForest, C.E., Larson, D.E., Martin, S.F., Plunkett, S.P., Rust, D.M.: 2000, J. Geophys. Res. 105, 27251 – 27259. CrossRefADSGoogle Scholar
  30. Wolfe, J.H.: 1972, In: Solar Wind 1, Asilomar Conference, March 21 – 26, 1971, 170 – 197. Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • R. P. Lepping
    • 1
    Email author
  • C.-C. Wu
    • 2
  • N. Gopalswamy
    • 3
  • D. B. Berdichevsky
    • 4
  1. 1.Space Weather LaboratoryNASA/GSFCGreenbeltUSA
  2. 2.University of Alabama in HuntsvilleHuntsvilleUSA
  3. 3.Solar System Exploration DivisionNASA/GSFCGreenbeltUSA
  4. 4.Sigma Space CorporationLanhamUSA

Personalised recommendations