Advertisement

Solar Physics

, Volume 251, Issue 1–2, pp 563–587 | Cite as

3D MHD Coronal Oscillations about a Magnetic Null Point: Application of WKB Theory

  • J. A. McLaughlin
  • J. S. L. Ferguson
  • A. W. Hood
HELIOSEISMOLOGY, ASTEROSEISMOLOGY, AND MHD CONNECTIONS

Abstract

This paper is a demonstration of how the WKB approximation can be used to help solve the linearised 3D MHD equations. Using Charpit’s method and a Runge – Kutta numerical scheme, we have demonstrated this technique for a potential 3D magnetic null point, B=[x,ε y,−(ε+1)z]. Under our cold-plasma assumption, we have considered two types of wave propagation: fast magnetoacoustic and Alfvén waves. We find that the fast magnetoacoustic wave experiences refraction towards the magnetic null point and that the effect of this refraction depends upon the Alfvén speed profile. The wave and thus the wave energy accumulate at the null point. We have found that current buildup is exponential and the exponent is dependent upon ε. Thus, for the fast wave there is preferential heating at the null point. For the Alfvén wave, we find that the wave propagates along the field lines. For an Alfvén wave generated along the fan plane, the wave accumulates along the spine. For an Alfvén wave generated across the spine, the value of ε determines where the wave accumulation will occur: fan plane (ε=1), along the x-axis (0<ε<1) or along the y-axis (ε>1). We have shown analytically that currents build up exponentially, leading to preferential heating in these areas. The work described here highlights the importance of understanding the magnetic topology of the coronal magnetic field for the location of wave heating.

Keywords

Magnetohydrodynamics: waves, propagation Magnetic fields: models Heating: coronal 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11207_2007_9107_MOESM1_ESM.mpeg (1.9 mb)
Video file

Video file

Video file

Video file

Video file

Video file

Video file

References

  1. Bender, C.M., Orszag, S.A.: 1978, Advanced Mathematical Methods for Scientists and Engineers, McGraw-Hill, Singapore. MATHGoogle Scholar
  2. Beveridge, C., Priest, E.R., Brown, D.S.: 2002, Solar Phys. 209, 333 – 347. CrossRefADSGoogle Scholar
  3. Brown, D.S., Priest, E.R.: 2001, Astron. Astrophys. 367, 339 – 346. CrossRefADSGoogle Scholar
  4. Cairns, R.A., Lashmore-Davies, C.N.: 1983, Phys. Fluids 26, 1268 – 1274. MATHCrossRefADSGoogle Scholar
  5. Craig, I.J., McClymont, A.N.: 1993, Astrophys. J. 405, 207 – 215. CrossRefADSGoogle Scholar
  6. Craig, I.J., Watson, P.G.: 1992, Astrophys. J. 393, 385 – 395. CrossRefADSGoogle Scholar
  7. De Moortel, I.: 2005, Philos. Trans. Roy. Soc. A 363, 2743 – 2760. CrossRefADSGoogle Scholar
  8. De Moortel, I.: 2006, Philos. Trans. Roy. Soc. A 364, 461 – 472. CrossRefADSGoogle Scholar
  9. De Moortel, I., Hood, A.W., Ireland, J., Arber, T.D.: 1999, Astron. Astrophys. 346, 641 – 651. ADSGoogle Scholar
  10. Evans, G., Blackledge, J., Yardley, P.: 1999, Analytical Methods for Partial Differential Equations, Springer, London. Google Scholar
  11. Galsgaard, K., Priest, E.R., Titov, V.S.: 2003, J. Geophys. Res. 108, 1 – 12. CrossRefGoogle Scholar
  12. Heyvaerts, J., Priest, E.R.: 1983, Astron. Astrophys. 117, 220 – 234. MATHADSGoogle Scholar
  13. Hood, A.W., Brooks, S.J., Wright, A.N.: 2002, Proc. Roy. Soc. A 458, 2307 – 2325. MATHCrossRefADSMathSciNetGoogle Scholar
  14. Khomenko, E.V., Collados, M.: 2006, Astrophys. J. 653, 739 – 755. CrossRefADSGoogle Scholar
  15. McDougall, A.M.D., Hood, A.W.: 2007, Solar Phys. 246, 259 – 271. CrossRefADSGoogle Scholar
  16. McLaughlin, J.A., Hood, A.W.: 2004, Astron. Astrophys. 420, 1129 – 1140. CrossRefADSGoogle Scholar
  17. McLaughlin, J.A., Hood, A.W.: 2005, Astron. Astrophys. 435, 313 – 325. CrossRefADSGoogle Scholar
  18. McLaughlin, J.A., Hood, A.W.: 2006a, Astron. Astrophys. 452, 603 – 613. MATHCrossRefADSGoogle Scholar
  19. McLaughlin, J.A., Hood, A.W.: 2006b, Astron. Astrophys. 459, 641 – 649. CrossRefADSGoogle Scholar
  20. Nakariakov, V.M., Roberts, B.: 1995, Solar Phys. 159, 399 – 402. CrossRefADSGoogle Scholar
  21. Nakariakov, V.M., Roberts, B., Murawski, K.: 1997, Solar Phys. 75, 93 – 105. CrossRefADSGoogle Scholar
  22. Nakariakov, V.M., Verwichte, E.: 2005, Living Reviews in Solar Physics 2, http://www.livingreviews.org/lrsp-2005-3 (cited August 2007).
  23. Parnell, C.E., Smith, J.M., Neukirch, T., Priest, E.R.: 1996, Phys. Plasmas 3, 759 – 770. CrossRefADSGoogle Scholar
  24. Pontin, D.I., Galsgaard, K.: 2007, J. Geophys. Res. 112, 3103 – 3116. CrossRefGoogle Scholar
  25. Pontin, D.I., Bhattacharjee, A., Galsgaard, K.: 2007, Phys. Plasmas 14, 2106 – 2119. Google Scholar
  26. Priest, E.R., Titov, V.S.: 1996, Philos. Trans. Roy. Soc. 354, 2951 – 2992. MATHCrossRefADSMathSciNetGoogle Scholar
  27. Titov, V.S., Hornig, G.: 2000, Phys. Plasmas 7, 3350 – 3542. CrossRefMathSciNetGoogle Scholar
  28. Weinberg, S.: 1962, Phys. Rev. 6, 1899 – 1909. CrossRefADSMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • J. A. McLaughlin
    • 1
  • J. S. L. Ferguson
    • 1
  • A. W. Hood
    • 1
  1. 1.School of Mathematics and StatisticsUniversity of St AndrewsSt AndrewsUK

Personalised recommendations