Advertisement

3D MHD Coronal Oscillations about a Magnetic Null Point: Application of WKB Theory

Abstract

This paper is a demonstration of how the WKB approximation can be used to help solve the linearised 3D MHD equations. Using Charpit’s method and a Runge – Kutta numerical scheme, we have demonstrated this technique for a potential 3D magnetic null point, B=[x,ε y,−(ε+1)z]. Under our cold-plasma assumption, we have considered two types of wave propagation: fast magnetoacoustic and Alfvén waves. We find that the fast magnetoacoustic wave experiences refraction towards the magnetic null point and that the effect of this refraction depends upon the Alfvén speed profile. The wave and thus the wave energy accumulate at the null point. We have found that current buildup is exponential and the exponent is dependent upon ε. Thus, for the fast wave there is preferential heating at the null point. For the Alfvén wave, we find that the wave propagates along the field lines. For an Alfvén wave generated along the fan plane, the wave accumulates along the spine. For an Alfvén wave generated across the spine, the value of ε determines where the wave accumulation will occur: fan plane (ε=1), along the x-axis (0<ε<1) or along the y-axis (ε>1). We have shown analytically that currents build up exponentially, leading to preferential heating in these areas. The work described here highlights the importance of understanding the magnetic topology of the coronal magnetic field for the location of wave heating.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

References

  1. Bender, C.M., Orszag, S.A.: 1978, Advanced Mathematical Methods for Scientists and Engineers, McGraw-Hill, Singapore.

  2. Beveridge, C., Priest, E.R., Brown, D.S.: 2002, Solar Phys. 209, 333 – 347.

  3. Brown, D.S., Priest, E.R.: 2001, Astron. Astrophys. 367, 339 – 346.

  4. Cairns, R.A., Lashmore-Davies, C.N.: 1983, Phys. Fluids 26, 1268 – 1274.

  5. Craig, I.J., McClymont, A.N.: 1993, Astrophys. J. 405, 207 – 215.

  6. Craig, I.J., Watson, P.G.: 1992, Astrophys. J. 393, 385 – 395.

  7. De Moortel, I.: 2005, Philos. Trans. Roy. Soc. A 363, 2743 – 2760.

  8. De Moortel, I.: 2006, Philos. Trans. Roy. Soc. A 364, 461 – 472.

  9. De Moortel, I., Hood, A.W., Ireland, J., Arber, T.D.: 1999, Astron. Astrophys. 346, 641 – 651.

  10. Evans, G., Blackledge, J., Yardley, P.: 1999, Analytical Methods for Partial Differential Equations, Springer, London.

  11. Galsgaard, K., Priest, E.R., Titov, V.S.: 2003, J. Geophys. Res. 108, 1 – 12.

  12. Heyvaerts, J., Priest, E.R.: 1983, Astron. Astrophys. 117, 220 – 234.

  13. Hood, A.W., Brooks, S.J., Wright, A.N.: 2002, Proc. Roy. Soc. A 458, 2307 – 2325.

  14. Khomenko, E.V., Collados, M.: 2006, Astrophys. J. 653, 739 – 755.

  15. McDougall, A.M.D., Hood, A.W.: 2007, Solar Phys. 246, 259 – 271.

  16. McLaughlin, J.A., Hood, A.W.: 2004, Astron. Astrophys. 420, 1129 – 1140.

  17. McLaughlin, J.A., Hood, A.W.: 2005, Astron. Astrophys. 435, 313 – 325.

  18. McLaughlin, J.A., Hood, A.W.: 2006a, Astron. Astrophys. 452, 603 – 613.

  19. McLaughlin, J.A., Hood, A.W.: 2006b, Astron. Astrophys. 459, 641 – 649.

  20. Nakariakov, V.M., Roberts, B.: 1995, Solar Phys. 159, 399 – 402.

  21. Nakariakov, V.M., Roberts, B., Murawski, K.: 1997, Solar Phys. 75, 93 – 105.

  22. Nakariakov, V.M., Verwichte, E.: 2005, Living Reviews in Solar Physics 2, http://www.livingreviews.org/lrsp-2005-3 (cited August 2007).

  23. Parnell, C.E., Smith, J.M., Neukirch, T., Priest, E.R.: 1996, Phys. Plasmas 3, 759 – 770.

  24. Pontin, D.I., Galsgaard, K.: 2007, J. Geophys. Res. 112, 3103 – 3116.

  25. Pontin, D.I., Bhattacharjee, A., Galsgaard, K.: 2007, Phys. Plasmas 14, 2106 – 2119.

  26. Priest, E.R., Titov, V.S.: 1996, Philos. Trans. Roy. Soc. 354, 2951 – 2992.

  27. Titov, V.S., Hornig, G.: 2000, Phys. Plasmas 7, 3350 – 3542.

  28. Weinberg, S.: 1962, Phys. Rev. 6, 1899 – 1909.

Download references

Author information

Correspondence to J. A. McLaughlin.

Additional information

Guest Editors: Laurent Gizon and Paul Cally

Electronic Supplementary Material

Video file

Video file

Video file

Video file

Video file

Video file

Video file

Video file

Video file

Video file

Video file

Video file

Video file

Rights and permissions

Reprints and Permissions

About this article

Cite this article

McLaughlin, J.A., Ferguson, J.S.L. & Hood, A.W. 3D MHD Coronal Oscillations about a Magnetic Null Point: Application of WKB Theory. Sol Phys 251, 563–587 (2008). https://doi.org/10.1007/s11207-007-9107-2

Download citation

Keywords

  • Magnetohydrodynamics: waves, propagation
  • Magnetic fields: models
  • Heating: coronal