Solar Physics

, Volume 247, Issue 1, pp 103–121 | Cite as

Modelling the Global Solar Corona II: Coronal Evolution and Filament Chirality Comparison

  • A. R. Yeates
  • D. H. Mackay
  • A. A. van Ballegooijen


This paper considers the hemispheric pattern of solar filaments using newly developed simulations of the real photospheric and 3D coronal magnetic fields over a six-month period, on a global scale. The magnetic field direction in the simulation is compared directly with the chirality of observed filaments, at their observed locations. In our model the coronal field evolves through a continuous sequence of nonlinear force-free equilibria, in response to the changing photospheric boundary conditions and the emergence of new magnetic flux. In total 119 magnetic bipoles with properties matching observed active regions are inserted. These bipoles emerge twisted and inject magnetic helicity into the solar atmosphere. When we choose the sign of this active-region helicity to match that observed in each hemisphere, the model produces the correct chirality for up to 96% of filaments, including exceptions to the hemispheric pattern. If the emerging bipoles have zero helicity, or helicity of the opposite sign, then this percentage is much reduced. In addition, the simulation produces a higher proportion of filaments with the correct chirality after longer times. This indicates that a key element in the evolution of the coronal field is its long-term memory, and the build-up and transport of helicity from low to high latitudes over many months. It highlights the importance of continuous evolution of the coronal field, rather than independent extrapolations at different times. This has significant consequences for future modelling such as that related to the origin and development of coronal mass ejections.


Magnetic fields: corona Prominences: magnetic field Helicity: magnetic 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Altschuler, M.D., Newkirk, G. Jr.: 1969, Solar Phys. 9, 131. CrossRefADSGoogle Scholar
  2. Antiochos, S.K.: 1987, Astrophys. J. 312, 886. CrossRefADSGoogle Scholar
  3. Aulanier, G., Demoulin, P.: 1998, Astron. Astrophys. 329, 1125. ADSGoogle Scholar
  4. Aulanier, G., Srivastava, N., Martin, S.F.: 2000, Astrophys. J. 543, 447. CrossRefADSGoogle Scholar
  5. Berger, M.A.: 1998, In: Webb, D., Rust, D., Schmieder, B. (eds.) New Perspectives on Solar Prominences, IAU Colloq. 167, 102. Google Scholar
  6. Berger, M.A.: 1999, Plasma Phys. Contr. Fusion 41, B167. CrossRefADSGoogle Scholar
  7. Berger, M.A., Field, G.B.: 1984, J. Fluid Mech. 147, 133. CrossRefMathSciNetADSGoogle Scholar
  8. Finn, J.H., Antonsen, T.M.: 1985, Comments Plasma Phys. Contr. Fusion 9, 111. Google Scholar
  9. Hudson, H.S., Bougeret, J.-L., Burkepile, J.: 2006, Space Sci. Rev. 123, 13. CrossRefADSGoogle Scholar
  10. Krall, J., Chen, J., Santoro, R., Spicer, D.S., Zalesak, S.T., Cargill, P.J.: 1998, Astrophys. J. 500, 992. CrossRefADSGoogle Scholar
  11. Leroy, J.-L.: 1978, Astron. Astrophys. 64, 247. MathSciNetADSGoogle Scholar
  12. Leroy, J.-L., Bommier, V., Sahal-Brechot, S.: 1983, Solar Phys. 83, 135. CrossRefADSGoogle Scholar
  13. Lindsey, C., Braun, D.C.: 2000, Science 287, 1799. CrossRefADSGoogle Scholar
  14. Litvinenko, Y.E., Wheatland, M.S.: 2005, Astrophys. J. 630, 587. CrossRefADSGoogle Scholar
  15. Lockwood, M.: 2003, J. Geophys. Res. 108(A3), SSH7-1. CrossRefGoogle Scholar
  16. Mackay, D.H.: 2005, In: Sankarasubramanian, K., Penn, M., Pevtsov A. (eds.) Large-scale Structures and their Role in Solar Activity, Astron. Soc. Pacific Conf. Ser. 346, 177. Google Scholar
  17. Mackay, D.H., Gaizauskas, V.: 2003, Solar Phys. 216, 121. CrossRefADSGoogle Scholar
  18. Mackay, D.H., Lockwood, M.: 2002, Solar Phys. 209, 287. CrossRefADSGoogle Scholar
  19. Mackay, D.H., van Ballegooijen, A.A.: 2001, Astrophys. J. 560, 445. CrossRefADSGoogle Scholar
  20. Mackay, D.H., van Ballegooijen, A.A.: 2005, Astrophys. J. 621, L77. CrossRefADSGoogle Scholar
  21. Mackay, D.H., van Ballegooijen, A.A.: 2006a, Astrophys. J. 641, 577. CrossRefADSGoogle Scholar
  22. Mackay, D.H., van Ballegooijen, A.A.: 2006b, Astrophys. J. 642, 1193. CrossRefADSGoogle Scholar
  23. Mackay, D.H., Gaizauskas, V., van Ballegooijen, A.A.: 2000, Astrophys. J. 544, 1122. CrossRefADSGoogle Scholar
  24. Mackay, D.H., Gaizauskas, V., Rickard, G.J., Priest, E.R.: 1997, Astrophys. J. 486, 534. CrossRefADSGoogle Scholar
  25. Martin, S.F.: 1998, Solar Phys. 182, 107. CrossRefADSGoogle Scholar
  26. Martin, S.F., Bilimoria, R., Tracadas, P.W.: 1994. In: Rutten, R.J., Schrijver, C.J. (eds.) Solar Surface Magnetism, NATO Advanced Science Institute, Vol. 433, Kluwer Academic, Dordrecht, 303. Google Scholar
  27. Mikić, Z., Linker, J.A., Schnack, D.D., Lionello, R., Tarditi, A.: 1999, Phys. Plasmas 6, 2217. CrossRefADSGoogle Scholar
  28. Nandy, D., Mackay, D.H., Canfield, R.C., Martens, P.C.H.: 2007, J. Atmos. Solar Terr. Phys., DOI:  10.1016/j.jastp.2007.08.34.
  29. Pevtsov, A.A., Balasubramaniam, K.S., Rogers, J.W.: 2003, Astrophys. J. 595, 500. CrossRefADSGoogle Scholar
  30. Pevtsov, A.A., Canfield, R.C., Metcalf, T.R.: 1995, Astrophys. J. 440, L109. CrossRefADSGoogle Scholar
  31. Priest, E.R.: 1982, Solar Magnetohydrodynamics, Reidel, Dordrecht, 133. Google Scholar
  32. Priest, E.R., Forbes, T.G.: 2000, Magnetic Reconnection, Cambridge University Press, Cambridge. zbMATHGoogle Scholar
  33. Régnier, S., Priest, E.R.: 2007, Astron. Astrophys. 468, 701. CrossRefADSGoogle Scholar
  34. Riley, P., Linker, J.A., Mikić, Z., Lionello, R., Ledvina, S.A., Luhmann, J.G.: 2006, Astrophys. J. 653, 1510. CrossRefADSGoogle Scholar
  35. Rust, D.M.: 1967, Astrophys. J. 150, 313. CrossRefADSGoogle Scholar
  36. Schatten, K.H., Wilcox, J.M., Ness, N.F.: 1969, Solar Phys. 6, 442. CrossRefADSGoogle Scholar
  37. Schrijver, C.J., Derosa, M.L.: 2003, Solar Phys. 212, 165. CrossRefADSGoogle Scholar
  38. Schrijver, C.J., Derosa, M.L., Metcalf, T.R., et al.: 2006, Solar Phys. 235, 161. CrossRefADSGoogle Scholar
  39. Sheeley, N.R.: 2005, Living Rev. Solar Phys. 2, No. 5,
  40. van Ballegooijen, A.A., Priest, E.R., Mackay, D.H.: 2000, Astrophys. J. 539, 983. CrossRefADSGoogle Scholar
  41. Wang, Y.-M., Sheeley, N.R.: 1989, Solar Phys. 124, 81. CrossRefADSGoogle Scholar
  42. Wang, Y.-M., Nash, A.G., Sheeley, N.R.: 1989, Science 245, 712. CrossRefADSGoogle Scholar
  43. Wang, Y.-M., Sheeley, N.R., Lean, J.: 2002, Astrophys. J. 580, 1188. CrossRefADSGoogle Scholar
  44. Welsch, B.T., Devore, C.R., Antiochos, S.K.: 2005, Astrophys. J. 634, 1395. CrossRefADSGoogle Scholar
  45. Wiegelmann, T.: 2007, Solar Phys. 240, 227. CrossRefADSGoogle Scholar
  46. Yang, W.H., Sturrock, P.A., Antiochos, S.K.: 1986, Astrophys. J. 309, 383. CrossRefADSGoogle Scholar
  47. Yeates, A.R., Mackay, D.H., van Ballegooijen, A.A.: 2007, Solar Phys. 245, 87. CrossRefADSGoogle Scholar
  48. Yokoyama, T., Shibata, K.: 1996, Publ. Astron. Soc. Japan 48, 353. ADSGoogle Scholar
  49. Zhang, M., Low, B.C.: 2005, Annu. Rev. Astron. Astrophys. 43, 103. CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • A. R. Yeates
    • 1
  • D. H. Mackay
    • 1
  • A. A. van Ballegooijen
    • 2
  1. 1.School of Mathematics and StatisticsUniversity of St AndrewsFifeScotland
  2. 2.Harvard-Smithsonian Center for AstrophysicsCambridgeMAUSA

Personalised recommendations