Solar Physics

, Volume 251, Issue 1–2, pp 251–265 | Cite as

Three-Dimensional MHD Wave Propagation and Conversion to Alfvén Waves near the Solar Surface. I. Direct Numerical Solution

  • P. S. CallyEmail author
  • M. Goossens
Helioseismology, asteroseismology, and MHD connections


The efficacy of fast – slow MHD mode conversion in the surface layers of sunspots has been demonstrated over recent years using a number of modelling techniques, including ray theory, perturbation theory, differential eigensystem analysis, and direct numerical simulation. These show that significant energy may be transferred between the fast and slow modes in the neighbourhood of the equipartition layer where the Alfvén and sound speeds coincide. However, most of the models so far have been two dimensional. In three dimensions the Alfvén wave may couple to the magnetoacoustic waves with important implications for energy loss from helioseismic modes and for oscillations in the atmosphere above the spot. In this paper, we carry out a numerical “scattering experiment,” placing an acoustic driver 4 Mm below the solar surface and monitoring the acoustic and Alfvénic wave energy flux high in an isothermal atmosphere placed above it. These calculations indeed show that energy conversion to upward travelling Alfvén waves can be substantial, in many cases exceeding loss to slow (acoustic) waves. Typically, at penumbral magnetic field strengths, the strongest Alfvén fluxes are produced when the field is inclined 30° – 40° from the vertical, with the vertical plane of wave propagation offset from the vertical plane containing field lines by some 60° – 80°.


Waves: magnetohydrodynamic Helioseismology: theory 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abramowitz, M., Stegun, I.A.: 1965, Handbook of Mathematical Functions, Dover, New York. Google Scholar
  2. An, C.-H., Musielak, Z.E., Moore, R.L., Suess, S.T.: 1989, Astrophys. J. 345, 597. CrossRefADSGoogle Scholar
  3. Bray, R.J., Loughhead, R.E.: 1974, The Solar Chromosphere 252, Chapman and Hall, London. Google Scholar
  4. Bogdan, T.J., Cally, P.S.: 1997, Proc. Roy. Soc. Lond. A 453, 943. zbMATHADSCrossRefGoogle Scholar
  5. Cally, P.S.: 1983, Solar Phys. 88, 77. CrossRefADSGoogle Scholar
  6. Cally, P.S.: 2000, Solar Phys. 192, 395. CrossRefADSGoogle Scholar
  7. Cally, P.S.: 2001, Astrophys. J. 548, 473. CrossRefADSGoogle Scholar
  8. Cally, P.S.: 2007, Astron. Nachr. 328, 286. CrossRefADSGoogle Scholar
  9. Cally, P.S., Bogdan, T.J.: 1993, Astrophys. J. 402, 732. CrossRefADSGoogle Scholar
  10. Cally, P.S., Bogdan, T.J.: 1997, Astrophys. J. 486, L67. CrossRefADSGoogle Scholar
  11. Cally, P.S., Bogdan, T.J., Zweibel, E.G.: 1994, Astrophys. J. 437, 505. CrossRefADSGoogle Scholar
  12. Christensen-Dalsgaard, J., Däppen, W., Ajukov, S.V., et al.: 1996, Science 272, 1286. CrossRefADSGoogle Scholar
  13. Crouch, A.D., Cally, P.S.: 2003, Solar Phys. 214, 201. CrossRefADSGoogle Scholar
  14. Crouch, A.D., Cally, P.S.: 2005, Solar Phys. 227, 1. CrossRefADSGoogle Scholar
  15. Ferraro, V.C.A., Plumpton, C.: 1958, Astrophys. J. 127, 459. CrossRefADSMathSciNetGoogle Scholar
  16. Melrose, D.B.: 1977, Aust. J. Phys. 27, 43. ADSGoogle Scholar
  17. Melrose, D.B., Simpson, M.A.: 1977, Aust. J. Phys. 30, 495. ADSGoogle Scholar
  18. Rubinstein, Z.: 1969, A Course in Ordinary and Partial Differential Equations, Academic, New York. zbMATHGoogle Scholar
  19. Schunker, H., Cally, P.S.: 2006, Mon. Not. Roy. Astron. Soc. 372, 551. CrossRefADSGoogle Scholar
  20. Schwartz, S.J., Cally, P.S., Bel, N.: 1984, Solar Phys. 92, 81. CrossRefADSGoogle Scholar
  21. Spruit, H.C., Bogdan, T.J.: 1992, Astrophys. J. 391, L109. CrossRefADSGoogle Scholar
  22. Tracy, E.R., Kaufman, A.N., Brizard, A.J.: 2003, Phys. Plasmas 10, 2147. CrossRefADSGoogle Scholar
  23. Zhugzhda, Y.D., Dzhalilov, N.S.: 1984, Astron. Astrophys. 132, 45. ADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.Centre for Stellar and Planetary Astrophysics, School of Mathematical SciencesMonash UniversityVICAustralia
  2. 2.Centrum voor Plasma-AstrofysicaK. U. LeuvenHeverleeBelgium

Personalised recommendations