Solar Physics

, Volume 248, Issue 2, pp 425–439 | Cite as

Automatic Detection and Classification of Coronal Holes and Filaments Based on EUV and Magnetogram Observations of the Solar Disk



A new method for the automated detection of coronal holes and filaments on the solar disk is presented. The starting point is coronal images taken by the Extreme Ultraviolet Telescope on the Solar and Heliospheric Observatory (SOHO/EIT) in the Fe ix/x 171 Å, Fe xii 195 Å, and He ii 304 Å extreme ultraviolet (EUV) lines and the corresponding full-disk magnetograms from the Michelson Doppler Imager (SOHO/MDI) from different phases of the solar cycle. The images are processed to enhance their contrast and to enable the automatic detection of the two candidate features, which are visually indistinguishable in these images. Comparisons are made with existing databases, such as the He i 10830 Å NSO/Kitt Peak coronal-hole maps and the Solar Feature Catalog (SFC) from the European Grid of Solar Observations (EGSO), to discriminate between the two features. By mapping the features onto the corresponding magnetograms, distinct magnetic signatures are then derived. Coronal holes are found to have a skewed distribution of magnetic-field intensities, with values often reaching 100 – 200 gauss, and a relative magnetic-flux imbalance. Filaments, in contrast, have a symmetric distribution of field intensity values around zero, have smaller magnetic-field intensity than coronal holes, and lie along a magnetic-field reversal line. The identification of candidate features from the processed images and the determination of their distinct magnetic signatures are then combined to achieve the automated detection of coronal holes and filaments from EUV images of the solar disk. Application of this technique to all three wavelengths does not yield identical results. Furthermore, the best agreement among all three wavelengths and NSO/Kitt Peak coronal-hole maps occurs during the declining phase of solar activity. The He ii data mostly fail to yield the location of filaments at solar minimum and provide only a subset at the declining phase or peak of the solar cycle. However, the Fe ix/x 171 Å and Fe xii 195 Å data yield a larger number of filaments than the Hα data of the SFC.


Sun: coronal holes Sun: filaments Sun: magnetic field Automatic detection and classification 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aboudarham, J., Scholl, I., Fuller, N., Fouesneau, M., Galametz, M., Gonon, F., Maire, A., Leroy, Y.: 2007, Automatic detection and tracking of filaments to fill-in a solar feature database. Ann. Geophys., in press. Google Scholar
  2. Andretta, V., Jones, H.P.: 1997, On the role of the solar corona and transition region in the excitation of the spectrum of neutral helium. Astrophys. J. 489, 375 – 394. CrossRefADSGoogle Scholar
  3. Bell, B., Noci, G.: 1976, Intensity of the Fe xv emission line corona, the level of geomagnetic activity, and the velocity of the solar wind. J. Geophys. Res. 81, 4508 – 4516. CrossRefADSGoogle Scholar
  4. Bentley, R.D., Csillaghy, A., Scholl, I.: 2004, The European grid of solar observations. In: Quinn, P.J., Bridger, A. (eds.) Optimizing Scientific Return for Astronomy through Information Technologies, Proc. SPIE 5493, 170 – 177. Google Scholar
  5. Delaboudinière, J.P., Artzner, G.E., Brunaud, J., Gabriel, A.H., Hochedez, J.F., Millier, F., Song, X.Y., Au, B., Dere, K.P., Howard, R.A., Kreplin, R., Michels, D.J., Moses, J.D., Defise, J.M., Jamar, C., Rochus, P., Chauvineau, J.P., Marioge, J.P., Catura, R.C., Lemen, J.R., Shing, L., Stern, R.A., Gurman, J.B., Neupert, W.M., Maucherat, A., Clette, F., Cugnon, P., van Dessel, E.L.: 1995, EIT: extreme-ultraviolet imaging telescope for the SOHO mission. Solar Phys. 162, 291 – 312. CrossRefADSGoogle Scholar
  6. de Toma, G.D., Arge, C.N.: 2005, Multi-wavelength observations of coronal holes. In: Sankarasubramanian, K., Penn, M., Pevtsov, A. (eds.) Large-scale Structures and Their Role in Solar Activity, CS-346, Publ. Astron. Soc. Pac., San Francisco, 251 – 260. Google Scholar
  7. Goldberg, L.: 1939, Transition probabilities for He I. Astrophys. J. 90, 414 – 428. CrossRefADSMATHGoogle Scholar
  8. Gonzalez, R.C., Woods, R.E.: 2002, Digital Image Processing, Addison-Wesley Longman, Boston. Google Scholar
  9. Harvey, J.W., Sheeley, N.R. Jr.: 1977, A comparison of He II 304 Å and He I 10830 Å spectroheliograms. Solar Phys. 54, 343 – 351. CrossRefADSGoogle Scholar
  10. Harvey, K.L., Recely, F.: 2002, Polar coronal holes during cycles 22 and 23. Solar Phys. 211, 31 – 52. CrossRefADSGoogle Scholar
  11. Harvey, K.L., Harvey, J.W., Sheeley, N.R. Jr.: 1982, Magnetic measurements of coronal holes during 1975–1980. Solar Phys. 79, 149 – 160. CrossRefADSGoogle Scholar
  12. Henney, C.J., Harvey, J.W.: 2005, Automated coronal hole detection using He 1083 nm spectroheliograms and photospheric magnetograms. In: Sankarasubramanian, K., Penn, M., Pevtsov, A. (eds.) Large-scale Structures and Their Role in Solar Activity, CS-346, Publ. Astron. Soc. Pac., San Francisco, 261 – 268. Google Scholar
  13. Krieger, A.S., Timothy, A.F., Roelof, E.C.: 1973, A coronal hole and its identification as the source of a high velocity solar wind stream. Solar Phys. 29, 505 – 525. CrossRefADSGoogle Scholar
  14. Liu, Y., Zhao, X., Hoeksema, T.: 2004, Correction of offset in MDI/SOHO magnetograms. Solar Phys. 219, 39 – 53. CrossRefADSGoogle Scholar
  15. Malanushenko, O.V., Jones, H.P.: 2005, Differentiating coronal holes from the quiet Sun by He 1083 nm imaging spectroscopy. Solar Phys. 226, 3 – 16. CrossRefADSGoogle Scholar
  16. Munro, R.H., Withbroe, G.L.: 1972, Properties of a coronal “hole” derived from extreme-ultraviolet observations. Astrophys. J. 176, 511 – 520. CrossRefADSGoogle Scholar
  17. Pizer, S.M., Amburn, E.P., Austin, J.D., Cromartie, R., Geselowitz, A., Greer, T., Romeny, B.T.H., Zimmerman, J.B.: 1987, Adaptive histogram equalization and its variation. Comput. Vision Graphics Image Process. 39(3), 355 – 368. CrossRefGoogle Scholar
  18. Reeves, E.M., Parkinson, W.H.: 1970, An atlas of extreme-ultraviolet spectroheliograms from OSO-IV. Astrophys. J. Suppl. Ser. 21, 405 – 409. CrossRefGoogle Scholar
  19. Scherrer, P.H., Bogart, R.S., Bush, R.I., Hoeksema, J.T., Kosovichev, A.G., Schou, J., Rosenberg, W., Springer, L., Tarbell, T.D., Title, A., Wolfson, C.J., Zayer, I., MDI Engineering Team: 1995, The solar oscillations investigation – Michelson Doppler imager. Solar Phys. 162, 129 – 188. CrossRefADSGoogle Scholar
  20. Scholl, I.: 2003, Conception, réalisation et utilisation d’archives de données solaires spatiales. Ph.D. thesis, Université Paris 6, France. Google Scholar
  21. Sheeley, N.R. Jr., Harvey, J.W., Feldman, W.C.: 1976, Coronal holes, solar wind streams, and recurrent geomagnetic disturbances – 1973 – 1976. Solar Phys. 49, 271 – 278. CrossRefADSGoogle Scholar
  22. Stark, J.A.: 2000, Adaptive image contrast enhancement using generalizations of histogram equalization. IEEE Trans. Image Process. 9(5), 889 – 896. CrossRefGoogle Scholar
  23. Vaiana, G.S., Zombeck, M., Krieger, A.S., Timothy, A.F.: 1976, ATM observations – X-ray results. Astrophys. Space Sci. 39, 75 – 101. CrossRefADSGoogle Scholar
  24. Zharkova, V.V., Aboudarham, J., Zharkov, S., Ipson, S.S., Benkhalil, A.K., Fuller, N.: 2005, Solar feature catalogues in EGSO. Solar Phys. 228, 361 – 375. CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.International Space UniversityIllkirch-GraffenstadenFrance
  2. 2.Laboratoire d’Études Spatiales et d’Instrumentation en Astrophysique (LESIA)Observatoire de Paris-MeudonMeudonFrance
  3. 3.University of HawaiiHonoluluUSA

Personalised recommendations