Solar Physics

, Volume 246, Issue 2, pp 471–485 | Cite as

Solar Cycle Predictions based on Solar Activity at Different Solar Latitudes

Article

Abstract

Many methods of predictions of sunspot maximum number use data before or at the preceding sunspot minimum to correlate with the following sunspot maximum of the same cycle, which occurs a few years later. Kane and Trivedi (Solar Phys. 68, 135, 1980) found that correlations of R z(max) (the maximum in the 12-month running means of sunspot number R z) with R z(min) (the minimum in the 12-month running means of sunspot number R z) in the solar latitude belt 20° – 40°, particularly in the southern hemisphere, exceeded 0.6 and was still higher (0.86) for the narrower belt > 30° S. Recently, Javaraiah (Mon. Not. Roy. Astron. Soc. 377, L34, 2007) studied the relationship of sunspot areas at different solar latitudes and reported correlations 0.95 – 0.97 between minima and maxima of sunspot areas at low latitudes and sunspot maxima of the next cycle, and predictions could be made with an antecedence of more than 11 years. For the present study, we selected another parameter, namely, SGN, the sunspot group number (irrespective of their areas) and found that SGN(min) during a sunspot minimum year at latitudes > 30° S had a correlation +0.78±0.11 with the sunspot number R z(max) of the same cycle. Also, the SGN during a sunspot minimum year in the latitude belt (10° – 30° N) had a correlation +0.87±0.07 with the sunspot number R z(max) of the next cycle. We obtain an appropriate regression equation, from which our prediction for the coming cycle 24 is R z(max )=129.7±16.3.

Keywords

Solar cycle Sunspots Predictions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dikpati, M., de Toma, G., Gilman, P.A.: 2006, Geophys. Res. Lett. 33, L05102. doi: 10.1029/2005GL025221. CrossRefGoogle Scholar
  2. Gnevyshev, M.N.: 1967, Solar Phys. 1, 107. CrossRefADSGoogle Scholar
  3. Gnevyshev, M.N.: 1977, Solar Phys. 51, 175. CrossRefADSGoogle Scholar
  4. Hathaway, D.H., Wilson, R.M.: 2006, Geophys. Res. Lett 33, L18101. doi: 10.1029/2006GL027053. CrossRefADSGoogle Scholar
  5. Javaraiah, J.: 2007, Mon. Not. Roy. Astron. Soc. 377, L34. CrossRefADSGoogle Scholar
  6. Joselyn, J.A., Anderson, J.B., Coffey, H., Harvey, K., Hathaway, D., Heckman, G., Hildner, E., Mende, W., Schatten, K., Thompson, R., Thomson, A.W.P., White, O.R.: 1997, Eos Trans. AGU 78, 205. CrossRefADSGoogle Scholar
  7. Kane, R.P.: 1978, Nature 274, 139. CrossRefADSGoogle Scholar
  8. Kane, R.P.: 1997, Geophys. Res. Lett. 24, 1899. CrossRefADSGoogle Scholar
  9. Kane, R.P.: 2005, Solar Phys. 228, 155. CrossRefADSGoogle Scholar
  10. Kane, R.P.: 2007, Solar Phys. 243, 205. CrossRefADSGoogle Scholar
  11. Kane, R.P., Trivedi, N.B.: 1980, Solar Phys. 68, 135. CrossRefADSGoogle Scholar
  12. Lantos, P.: 2006, Solar Phys. 236, 199. CrossRefADSGoogle Scholar
  13. Mayaud, P.N.: 1973, IAGA Bull. 33, IUGG Publication Office, Paris, 262. Google Scholar
  14. Ohl, A.I.: 1984, Soln. Dann. 12, 69. ADSGoogle Scholar
  15. Ramesh, K.B.: 2000, Solar Phys. 197, 421. CrossRefADSGoogle Scholar
  16. Schatten, K.: 2005, Geophys. Res. Lett. 32, L21106. doi: 10.1029/2005GL021664. CrossRefADSGoogle Scholar
  17. Schatten, K.H., Pesnell, W.D.: 1993, Geophys. Res. Lett. 20, 2275. ADSGoogle Scholar
  18. Svalgaard, L., Cliver, E.W., Kamide, Y.: 2005, Geophys. Res. Lett. 32, doi: 10.1029/2004GL021664.
  19. Temmer, M., Veronig, A., Hanslmeier, A.: 2002, Astron. Astrophys. 390, 707. CrossRefADSGoogle Scholar
  20. Wilson, R.M., Hathaway, D.H., Reichmann, E.J.: 1998, J. Geophys. Res. 103, 6596. ADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.Instituto Nacional de Pesquisas EspaciasSão Jose dos CamposBrazil

Personalised recommendations