Advertisement

Solar Physics

, Volume 245, Issue 2, pp 327–343 | Cite as

On Solar Intermediate Drift Radio Bursts at Decimeter and Meter Wavelength

  • G. Rausche
  • H. Aurass
  • G. Mann
  • M. Karlický
  • C. Vocks
Article

Abstract

Fiber – or intermediate drift – bursts are a continuum fine structure in some complex solar radio events. We present the analysis of such bursts in the X17 flare on 28 Oct. 2003. Based on the whistler wave model of fiber bursts we derive the 3D magnetic field structures that carry the radio sources in different stages of the event and obtain insight into the energy release evolution in the main flare phase, the related paths of nonthermal particle propagation in the corona, and the involved magnetic field structures. Additionally, we test the whistler wave model of fiber bursts for the meter and the decimeter wave range. Radio spectral data (Astrophysikalisches Institut Potsdam, Astronomical Observatory Ondřejov) show a continuum with fibers for ≈ 6 min during the main flare phase. Radio imaging data (Nançay Radio Heliograph) yield source centroid positions of the fibers at three frequencies in the spectrometer band. We compare the radio positions with the potential coronal magnetic field extrapolated from SOHO/MDI data. Given the detected source site configuration and evolution, and the change of the fiber burst frequency range with time, we can also extract those coronal flux tubes where the high-frequency fiber bursts are situated even without decimeter imaging data. To this aim we use a kinetic simulation of whistler wave growth in sample flux tubes modeled by selected potential field lines and a barometric density model. The whistler wave model of fiber bursts accurately explains the observations on 28 Oct. 2003. A laterally extended system of low coronal loops is found to guide the whistler waves. It connects several neighboring active regions including the flaring AR 10486. For varying source sites the fiber bursts are emitted at the fundamental mode of the plasma frequency over the whole range (1200 – 300 MHz). The present event can be understood without assuming two different generation mechanisms for meter and decimeter wave fiber bursts. It gives new insight into particle acceleration and propagation in the low flare and post-CME corona.

Keywords

Sun: magnetic fields Sun: radio emission Sun: flares CMEs Particle acceleration 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aurass, H., Rausche, G., Mann, G.: 2007, Astron. Astrophys. 471, L37. CrossRefADSGoogle Scholar
  2. Aurass, H., Rausche, G., Mann, G., Hofmann, A.: 2005, Astron. Astrophys. 435, 1137. CrossRefADSGoogle Scholar
  3. Aurass, H., Mann, G., Rausche, G., Warmuth, A.: 2006, Astron. Astrophys. 457, 681. CrossRefADSGoogle Scholar
  4. Benz, A.O., Mann, G.: 1998, Astron. Astrophys. 333, 1034. ADSGoogle Scholar
  5. Bernold, T., Treumann, R.: 1983, Astrophys. J. 264, 677. CrossRefADSGoogle Scholar
  6. Démoulin, P., Bagalá, L.G., Mandrini, C.H., Hénoux, J.C., Rovira, M.G.: 1997, Astron. Astrophys. 325, 305. ADSGoogle Scholar
  7. Handy, B.N., et al.: 1999, Solar Phys. 187, 229. CrossRefADSGoogle Scholar
  8. Kerdraon, A., Delouis, J.: 1997, In: Trottet, G. (ed.) Coronal Physics from Radio and Space Observations, Springer, Heidelberg, 192. Google Scholar
  9. Kuijpers, J.: 1975, Solar Phys. 44, 173. CrossRefADSGoogle Scholar
  10. Kuznetsov, A.A.: 2006, Solar Phys. 237, 153. CrossRefADSGoogle Scholar
  11. Lin, R.P., et al.: 2002, Solar Phys. 210, 3. CrossRefADSGoogle Scholar
  12. Mann, G.: 2006, In: Gopalswamy, N., Mewaldt, R. (eds.) Solar Eruptions and Energetic Particles, Geophysical Monograph Series 165, AGU, Washington, 221. Google Scholar
  13. Mann, G., Karlický, M., Motschmann, U.: 1987, Solar Phys. 110, 381. CrossRefADSGoogle Scholar
  14. Mann, G., Baumgärtel, K., Chernov, G.P., Karlický, M.: 1989, Solar Phys. 120, 383. CrossRefADSGoogle Scholar
  15. Mann, G., Aurass, H., Voigt, W., Paschke, J.: 1992, ESA SP-348, 129. Google Scholar
  16. Mann, G., Jansen, F., MacDowall, R.J., Kaiser, M.L., Stone, R.G.: 1999, Astron. Astrophys. 348, 614. ADSGoogle Scholar
  17. Melrose, D.B.: 1985, In: McLean, D.J., Labrum, N.R. (eds.) Solar Radiophysics, Cambridge University Press, Cambridge, 177. Google Scholar
  18. Newkirk, G.A.: 1961, Astrophys. J. 133, 983. CrossRefADSGoogle Scholar
  19. Scherrer, P.H., et al.: 1995, Solar Phys. 162, 129. CrossRefADSGoogle Scholar
  20. Somov, B.V.: 2000, Cosmic Plasma Physics, Astrophys. Space Sci. Lib. 251, Kluwer, Dordrecht. Google Scholar
  21. Treumann, R.A., Güdel, M., Benz, A.O.: 1990, Astron. Astrophys. 236, 242. ADSGoogle Scholar
  22. Vocks, C., Mann, G.: 2006, Astron. Astrophys. 452, 331. zbMATHCrossRefADSGoogle Scholar
  23. Warmuth, A., Mann, G.: 2005, Astron. Astrophys. 435, 1123. CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • G. Rausche
    • 1
  • H. Aurass
    • 1
  • G. Mann
    • 1
  • M. Karlický
    • 2
  • C. Vocks
    • 1
  1. 1.Astrophysical Institute PotsdamPotsdamGermany
  2. 2.Astronomical Institute OndřejovOndřejovCzech Republic

Personalised recommendations