Solar Physics

, Volume 246, Issue 1, pp 101–118 | Cite as

Linear MHD Sausage Waves in Compressible Magnetically Twisted Flux Tubes

Article

Abstract

Oscillations of magnetic flux tubes are of great importance as they contain information about the geometry and fine structure of the flux tubes. Here we derive and analytically solve in terms of Kummer’s functions the linear governing equations of wave propagation for sausage surface and body modes (m=0) of a magnetically twisted compressible flux tube embedded in a compressible uniformly magnetized plasma environment in cylindrical geometry. A general dispersion relation is obtained for such flux tubes. Numerical solutions for the phase velocity are obtained for a wide range of wavenumbers and for varying magnetic twist. The effect of magnetic twist on the period of oscillations of sausage surface modes for different values of the wavenumber and vertical magnetic field strength is calculated for representative photospheric and coronal conditions. These results generalize and extend previous studies of MHD waves obtained for incompressible or for compressible but nontwisted flux tubes. It is found that magnetic twist may change the period of sausage surface waves of the order of a few percent when compared to counterparts in straight nontwisted flux tubes. This information will be most relevant when high-resolution observations are used for diagnostic exploration of MHD wave guides in analogy to solar-interior studies by means of global eigenoscillations in helioseismology.

Keywords

Twisted magnetic flux tube MHD waves Solar atmosphere Magneto-seismology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abramowitz, M., Stegun, I.A.: 1964, Handbook of Mathematical Functions, National Bureau of Standards, Washington. MATHGoogle Scholar
  2. Appert, K., Gruber, R., Vaclavik, J.: 1974, Phys. Fluids 17, 1471. CrossRefGoogle Scholar
  3. Aschwanden, M.: 2004, Physics of the Solar Corona. An Introduction, Praxis, Chichester. Google Scholar
  4. Banerjee, D., Erdélyi, R., Oliver, R., O’Shea, E.: 2007, Solar Phys., DOI 10.1007/s11207-007-9029-z.
  5. Bennett, K., Roberts, B., Narian, U.: 1999, Solar Phys. 185, 41. CrossRefADSGoogle Scholar
  6. Edwin, P.M., Roberts, B.: 1983, Solar Phys. 88, 179. CrossRefADSGoogle Scholar
  7. Erdélyi, R.: 2006, Philos. Trans. R. Soc. A 364, 351. CrossRefADSGoogle Scholar
  8. Erdélyi, R., Fedun, V.: 2006, Solar Phys. 238, 41. CrossRefADSGoogle Scholar
  9. Goedbloed, J.P.: 1971, Physica 53, 412. CrossRefADSGoogle Scholar
  10. Goossens, M.: 1991, Advances in Solar System Magnetohydrodynamics, Cambridge University Press, Cambridge. Google Scholar
  11. Kadomtsev, B.B.: 1966, In: Leontovich, M.A. (ed.) Reviews of Plasma Physics, Consultants Bureau, New York, 153. Google Scholar
  12. Klimchuk, J.A., Antiochos, S.K., Norton, D.: 2000, Astrophys. J. 542, 504. CrossRefADSGoogle Scholar
  13. Ruderman, M.S.: 2005, Phys. Plasmas 12, 034701. CrossRefMathSciNetGoogle Scholar
  14. Sakurai, T., Goossens, M., Hollweg, J.V.: 1991, Solar Phys. 133, 227. CrossRefADSGoogle Scholar
  15. Uberoi, C., Somasundaram, K.: 1980, Plasma Phys. 22, 747. CrossRefADSGoogle Scholar
  16. Zhugzhda, Y.D., Goossens, M.: 2001, Astron. Astrophys. 377, 330. CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.Solar Physics and Space Plasma Research Centre (SP²RC), Department of Applied MathematicsUniversity of SheffieldSheffieldUK

Personalised recommendations