Advertisement

Solar Physics

, Volume 241, Issue 2, pp 411–426 | Cite as

Field-Dependent Adaptive Optics Correction Derived with the Spectral Ratio Technique

  • C. DenkerEmail author
  • N. Deng
  • T. R. Rimmele
  • A. Tritschler
  • A. Verdoni
Article

Abstract

In this empirical study, we compare high-resolution observations obtained with the 65-cm vacuum reflector at Big Bear Solar Observatory (BBSO) in 2005 and with the Dunn Solar Telescope (DST) at the National Solar Observatory/Sacramento Peak (NSO/SP) in 2006. We measure the correction of the high-order adaptive optics (AO) systems across the field of view (FOV) using the spectral ratio technique, which is commonly employed in speckle masking imaging, and differential image motion measurements. The AO correction is typically much larger (10′′ to 25′′) than the isoplanatic angle and can be described by a radially symmetric function with a central core and extended wings. The full-width at half-maximum (FWHM) of the core represents a measure of the AO correction. The average FWHM values for BBSO and NSO/SP are 23.5′′ and 18.2′′, respectively. The extended wings of the function show that the AO systems still contribute to an improved speckle reconstruction at the periphery of the 80′′×80′′ FOV. The major differences in the level of AO correction between BBSO and NSO/SP can be explained by different contributions of ground-layer- and free-atmosphere-dominated seeing, as well as different FOVs of the wavefront sensors. In addition, we find an anisotropic spectral ratio in sunspot penumbrae caused by the quasi-one-dimensional nature of penumbral filaments, which introduces a significant error in the estimation of the Fourier amplitudes during the image restoration process.

Keywords

Adaptive Optic Strehl Ratio Wavefront Sensor Lock Point Spectral Ratio Technique 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Avila, R., Carrasco, E., Ibañez, F., Vernin, J., Prieur, J.-L., Cruz, D.X.: 2006, Publ. Astron. Soc. Pacific 118, 503. CrossRefADSGoogle Scholar
  2. Beckers, J.M.: 1993, Annu. Rev. Astron. Astrophys. 31, 13. CrossRefADSMathSciNetGoogle Scholar
  3. Beckers, J.M., Liu, Z., Jin, Z.: 2003, In: Keil, S.L., Avakyan, S.V. (eds.) Innovative Telescopes and Instrumentation for Solar Astrophysics, Proc. SPIE 4853, 273. Google Scholar
  4. Berkefeld, T., Soltau, D., von der Lühe, O.: 2005, In: Tyson, R.K., Lloyd-Hart, M. (eds.) Astronomical Adaptive Optics Systems and Applications II, Proc. SPIE 5903, 219. Google Scholar
  5. Berkefeld, T., Soltau, D., von der Lühe, O.: 2006, In: Ellerbroek, B.L., Bonaccini Calia, D. (eds.) Advances in Adaptive Optics II, Proc. SPIE 6272, 627205. Google Scholar
  6. Cagigal, M.P., Canales, V.F.: 2000, J. Opt. Soc. Am. A 17, 903. ADSGoogle Scholar
  7. Chun, M.: 1998, Publ. Astron. Soc. Pacific 110, 317. CrossRefADSGoogle Scholar
  8. de Boer, C.R.: 1996, Astron. Astrophys. Suppl. 120, 195. CrossRefADSGoogle Scholar
  9. Denker, C., Mascarinas, D., Xu, Y., Cao, W., Yang, G., Wang, H., Goode, P.R., Rimmele, T.: 2005, Solar Phys. 227, 217. CrossRefADSGoogle Scholar
  10. Denker, C., Tritschler, A., Rimmele, T.R., Richards, K., Hegwer, S.L., Wöger, F.: 2007, Publ. Astron. Soc. Pacific 119, 170. CrossRefADSGoogle Scholar
  11. Didkovsky, L.V., et al.: 2003, In: Keil, S.L., Avakyan, S.V. (eds.) Innovative Telescopes and Instrumentation for Solar Astrophysics, Proc. SPIE 4853, 630. Google Scholar
  12. Flicker, R.C., Rigaut, F.J.: 2005, J. Opt. Soc. Am. A 22, 504. CrossRefADSGoogle Scholar
  13. Fried, D.L.: 1966, J. Opt. Soc. Am. 56, 1372. ADSGoogle Scholar
  14. Fried, D.L.: 1982, J. Opt. Soc. Am. 72, 52. ADSGoogle Scholar
  15. Fusco, T., Conan, J.-M., Mugnier, L.M., Michau, V., Rousset, G.: 2000, Astron. Astrophys. Suppl. Ser. 142, 149. CrossRefADSGoogle Scholar
  16. Hardy, J.W.: 1998, Adaptive Optics for Astronomical Telescopes, Oxford University Press, New York. Google Scholar
  17. Korff, D.: 1973, J. Opt. Soc. Am. 63, 971. ADSGoogle Scholar
  18. Marino, J., Rimmele, T.R., Christou, J.: 2006, In: Ellerbroek, B.L., Bonaccini Calia, D. (eds.) Advances in Adaptive Optics II, Proc. SPIE 6272, 62723W. Google Scholar
  19. Paxman, R.G., Seldin, J.H., Löfdahl, M.G., Scharmer, G.B., Keller, C.U.: 1996, Astrophys. J. 466, 1087. CrossRefADSGoogle Scholar
  20. Puschmann, K., Sailer, M.: 2006, Astron. Astrophys. 454, 1011. CrossRefADSGoogle Scholar
  21. Ren, D., Hegwer, S.L., Rimmele, T., Didkovsky, L.V., Goode, P.R.: 2003, In: Keil, S.L., Avakyan, S.V. (eds.) Innovative Telescopes and Instrumentation for Solar Astrophysics, Proc. SPIE 4853, 593. Google Scholar
  22. Rimmele, T.R.: 2000, In: Wizinowich, P.L. (ed.) Adaptive Optical Systems Technology, Proc. SPIE 4007, 218. Google Scholar
  23. Rimmele, T.R.: 2004, In: Calia, D.B., Ellerbroek, B.L., Ragazzoni, R. (eds.) Advancements in Adaptive Optics, Proc. SPIE 5490, 34. Google Scholar
  24. Rimmele, T.R., et al.: 2003, In: Wizinowich, P.L., Bonaccini, D. (eds.) Adaptive Optical System Technologies II, Proc. SPIE 4839, 635. Google Scholar
  25. Rimmele, T.R., et al.: 2004, In: Fineschi, S., Gummin, M.A. (eds.) Telescopes and Instrumentation for Solar Astrophysics, Proc. SPIE 5171, 179. Google Scholar
  26. Rimmele, T.R., Richards, K., Roche, J., Hegwer, S.L., Tritschler, A.: 2006, In: Ellerbroek, B.L., Bonaccini Calia, D. (eds.) Advances in Adaptive Optics II, Proc. SPIE 6272, 627206. Google Scholar
  27. Roadcap, J.R., Murphy, E.A.: 1999, Pure Appl. Geophys. 156, 503. CrossRefADSGoogle Scholar
  28. Roddier, F.: 1981, In: Wolf, E. (ed.), Progress in Optics 19, North-Holland, Amsterdam, 281. Google Scholar
  29. Roddier, F.: 2004, Adaptive Optics in Astronomy, Cambridge University Press, Cambridge. Google Scholar
  30. Roggemann, M.C., Welsh, B.: 1996, Imaging Through Turbulence, CRC Press, Boca Raton. Google Scholar
  31. Sasiela, R.J.: 1992, J. Opt. Soc. Am. A 9, 1398. ADSGoogle Scholar
  32. Stein, R.F., Nordlund, A.: 1998, Astrophys. J. 499, 914. CrossRefADSGoogle Scholar
  33. Tokovinin, A.: 2004, Publ. Astron. Soc. Pacific 116, 941. CrossRefADSGoogle Scholar
  34. Tokovinin, A., Le Louarn, M., Sarazin, M.: 2000, J. Opt. Soc. Am. A 17, 1819. ADSGoogle Scholar
  35. Véran, J.-P., Rigaut, F., Maître, H., Rouan, D.: 1997, J. Opt. Soc. Am. A 114, 3057. Google Scholar
  36. van Noort, M., van der Rouppe Voort, L., Löfdahl, M.G.: 2005, Solar Phys. 228, 191. CrossRefADSGoogle Scholar
  37. von der Lühe, O.: 1984, J. Opt. Soc. Am. A 1, 510. ADSCrossRefGoogle Scholar
  38. Wang, J.Y., Markey, J.K.: 1978, J. Opt. Soc. Am. 68, 789. Google Scholar
  39. Wilken, V., de Boer, C.R., Denker, C., Kneer, F.: 1997, Astron. Astrophys. 325, 819. ADSGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • C. Denker
    • 1
    • 2
    Email author
  • N. Deng
    • 1
    • 3
  • T. R. Rimmele
    • 4
  • A. Tritschler
    • 4
  • A. Verdoni
    • 1
  1. 1.Center for Solar-Terrestrial ResearchNew Jersey Institute of TechnologyNewarkUSA
  2. 2.Astrophysikalisches Institut PotsdamPotsdamGermany
  3. 3.Department of Physics and AstronomyCalifornia State University NorthridgeNorthridgeUSA
  4. 4.Sacramento PeakNational Solar ObservatorySunspotUSA

Personalised recommendations