Solar Physics

, Volume 238, Issue 1, pp 13–27 | Cite as

Coronal Magnetic Topologies in a Spherical Geometry II. Four Balanced Flux Sources

Article

Abstract

The Sun’s magnetic field is the primary factor determining the structure and evolution of the solar corona. Here, magnetic topology is used in combination with a Green’s function method to model the global coronal magnetic field with a spherical photosphere. We focus on the case of three negative flux sources and one positive source, completing our previous categorisation of the topological states and bifurcations that are present in quadrupolar configurations in a spherical geometry. Three fundamental varieties of topological state are found, with three types of bifurcation taking one to the other. A comparison to the equivalent results for a planar photosphere is then carried out, and the differences between the two cases are explained.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barnes, G. and Leka, K.D.: 2006, Astrophys. J., 646, 1303.CrossRefADSGoogle Scholar
  2. Beveridge, C., Brown, D.S., and Priest, E.R.: 2004, Geophys. Astrophys. Fluid Dyn. 98, 429.MathSciNetCrossRefADSGoogle Scholar
  3. Beveridge, C. and Longcope, D.W.: 2006, Astrophys. J. 636, 453.CrossRefADSGoogle Scholar
  4. Beveridge, C., Priest, E.R., and Brown, D.S.: 2002, Solar Phys. 209, 333.CrossRefADSGoogle Scholar
  5. Brown, D.S. and Priest, E.R.: 1999a, Solar Phys. 190, 25.CrossRefADSGoogle Scholar
  6. Brown, D.S. and Priest, E.R.: 1999b, Proc. Roy. Soc. London A 455, 3931.MathSciNetADSMATHGoogle Scholar
  7. Close, R.M., Parnell, C.E., and Priest, E.R.: 2004, Solar Phys. 225, 21.CrossRefADSGoogle Scholar
  8. Fletcher, L., Metcalf, T.R., Alexander, D., Brown, D.S., and Ryder, L.A.: 2001, Astrophys. J. 554, 451.CrossRefADSGoogle Scholar
  9. Gorbachev, V.S., Kelner, S.R., Somov, B.V., and Shvarts, A.S.: 1988, Soviet Astron. 32, 308.ADSGoogle Scholar
  10. Inverarity, G.W. and Priest, E.R.: 1999, Solar Phys. 186, 99.CrossRefADSGoogle Scholar
  11. Longcope, D.W. and Magara, T.: 2004, Astrophys. J. 608, 1106.CrossRefADSGoogle Scholar
  12. Longcope, D.W., McKenzie, D.E., Cirtain, J., and Scott, J.: 2005, Astrophys. J. 630, 596.CrossRefADSGoogle Scholar
  13. Longcope, D.W.: 2005, Living Rev. Solar Phys. 2, No. 7.Google Scholar
  14. Maclean, R.C., Beveridge, C., Hornig, G., and Priest, E.R.: 2006, Solar Phys. 235, 259.CrossRefADSGoogle Scholar
  15. Maclean, R.C., Beveridge, C., Longcope, D.W., Brown, D.S., and Priest, E.R.: 2005, Proc. Roy. Soc. London A 461, 2099.MathSciNetADSCrossRefMATHGoogle Scholar
  16. Molodenskii, M.M. and Syrovatskii, S.I.: 1977, Soviet Astron. 21, 734.ADSGoogle Scholar
  17. Nemenman, I.M. and Silbergleit, A.S.: 1999, J. Appl. Phys. 86, 614.CrossRefADSGoogle Scholar
  18. Parnell, C.E., Smith, J.M., Neukirch, T., and Priest, E.R.: 1996, Phys. Plasmas 3, 759.CrossRefADSGoogle Scholar
  19. Priest, E.R., Bungey, T.N., and Titov, V.S.: 1997, Geophys. Astrophys. Fluid Dyn. 84, 127.MathSciNetADSGoogle Scholar
  20. Priest, E.R., Longcope, D.W., and Heyvaerts, J.: 2005, Astrophys. J. 624, 1057.CrossRefADSGoogle Scholar
  21. Priest, E.R. and Titov, V.S.: 1996, Phil. Trans. Roy. Soc. London A 354, 2951.MATHMathSciNetADSGoogle Scholar
  22. Sakurai, T.: 1982, Solar Phys. 76, 301.CrossRefADSGoogle Scholar
  23. Titov, V.S., Hornig, G., and Démoulin, P.: 2002, J. Geophys. Res. 107(A8), SSH 3-1.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Institute of MathematicsUniversity of St. AndrewsFifeU.K.
  2. 2.Department of PhysicsMontana State UniversityBozemanU.S.A.

Personalised recommendations