Generation of Intermediate Drift Bursts by Magnetohydrodynamic Waves in the Solar Corona
Abstract
The plasma mechanism of radio emission generation in an inhomogeneous medium is investigated. In the model under study, the electron beam with loss-cone distribution generates upper-hybrid waves that, in turn, are transformed into radio emission. It is shown that the influence of the plasma density inhomogeneity limits the plasma waves’ intensity considerably due to variation in their wave vector. The results are used to interpret the intermediate drift (IMD) bursts. A model is proposed in which these bursts are reflections of propagating small-scale (with amplitudes of about 1% and sizes of hundreds of kilometers) magnetohydrodynamic (MHD) disturbances of magnetic tubes. It is shown that this model allows us to explain the spectral parameters of the bursts in question. At present, the lack of precise and independent data about the magnetic field does not allow us to decide definitively between the existing models (whistler or MHD waves) of the IMD bursts; nevertheless, if the proposed model is correct, it can be used to determine the characteristics of the coronal MHD waves.
Keywords
Solar Phys Radio Emission Plasma Wave Drift Rate Magnetic TubePreview
Unable to display preview. Download preview PDF.
References
- Aschwanden, M.J., De Pontieu, B., Schrijver, C. J., and Title, A.M.: 2002, Solar Phys. 206, 99.CrossRefADSGoogle Scholar
- Aschwanden, M.J.: 2004, Physics of the Solar Corona, Springer Praxis Books, Berlin.Google Scholar
- Aurass, H., Rausche, G., Mann, G., and Hofmann, A.: 2005, Astron. Astrophys. 435, 1137.CrossRefADSGoogle Scholar
- Benz, A.O. and Mann, G.: 1998, Astron. Astrophys. 333, 1034.ADSGoogle Scholar
- Bernold, T.E.X. and Treumann, R.A.: 1983, Astrophys. J. 264, 677.CrossRefADSGoogle Scholar
- Chernov, G.P.: 1976a, Soviet Astron. 20, 449.ADSGoogle Scholar
- Chernov, G.P.: 1976b, Soviet Astron. 20, 582.ADSGoogle Scholar
- Chernov, G.P.: 1990, Soviet Astron. 34, 66.ADSGoogle Scholar
- Fu, Q., Ji, H., Qin, Z., Xu, Z., Xia, Z., Wu, H., Liu, Y., Yan, Y., Huang, G., Chen, Z., Jin, Z., Yao, Q., Cheng, C., Xu, F., Wang, M., Pei, L., Chen, S., Yang, G., Tan, C., and Shi, S.: 2004, Solar Phys. 222, 167.CrossRefADSGoogle Scholar
- Kuijpers, J.: 1974, Solar Phys. 36, 157.CrossRefADSGoogle Scholar
- Kuijpers, J.: 1975, Solar Phys. 44, 173.CrossRefADSGoogle Scholar
- Mann, G., Karlický, M., and Motschmann, U.: 1987, Solar Phys. 110, 381.CrossRefADSGoogle Scholar
- Melrose, D.B.: 1975, Aust. J. Phys. 28, 101.ADSGoogle Scholar
- Nelson, G.D. and Melrose, D.B.: 1985, in D.J. McLean and N.R. Labrum (eds.), Solar Radiophysics, Cambridge University Press, Cambridge, p. 333.Google Scholar
- Roberts, B., Edwin, P.M., and Benz, A.O.: 1984, Astrophys. J. 279, 857.CrossRefADSGoogle Scholar
- Roberts, B.: 2000, Solar Phys. 193, 139.CrossRefADSGoogle Scholar
- Schrijver, C.J., Aschwanden, M.J., and Title, A.M.: 2002, Solar Phys. 206, 69.CrossRefADSGoogle Scholar
- Stepanov, A.V.: 1974, Soviet Astron. 17, 781.ADSGoogle Scholar
- Treumann, R.A., Güdel, M., and Benz, A.O.: 1990, Astron. Astrophys. 236, 242.ADSGoogle Scholar
- Verwichte, E., Nakariakov, V.M., and Cooper, F.C.: 2005, Astron. Astrophys. 430, L65.CrossRefADSGoogle Scholar
- Vlasov, V.G., Kuznetsov, A.A., and Altyntsev, A.T.: 2002, Astron. Astrophys. 382, 1061.CrossRefADSGoogle Scholar
- Winglee, R.M. and Dulk, G.A.: 1986, Astrophys. J. 307, 808.CrossRefADSGoogle Scholar
- Young, C.W., Spencer, C.L., Moreton, G.E., and Roberts, J.A.: 1961, Astrophys. J. 133, 243.CrossRefADSGoogle Scholar
- Zaitsev, V.V. and Stepanov, A.V.: 1983, Solar Phys. 88, 297.CrossRefADSGoogle Scholar
- Zheleznyakov, V.V.: 1997, Radioemission in the Astrophysical Plasma, Yanus-K, Moscow.Google Scholar
- Zlotnik, E.Ya.: 1968, Soviet Astron. 12, 245.ADSGoogle Scholar