Solar Physics

, Volume 236, Issue 2, pp 415–439 | Cite as

IBIS: A New Post-Focus Instrument for Solar Imaging Spectroscopy

Article

Abstract

A new instrument for solar bi-dimensional spectroscopy, the Interferometric BIdimensional Spectrometer (IBIS), has been successfully installed at the Dunn Solar Telescope of the National Solar Observatory (USA-NM) in June 2003. This instrument is essentially composed of a series of two Fabry-Perot interferometers and a set of narrow-band interference filters, used in a classic mount and in axial-mode. It has been designed to take monochromatic images of the solar surface with high spectral (R ≥ 200 000), spatial ≃ 0.2″), and temporal resolution (several frames s−1). IBIS has a circular field of view, 80″ in diameter and, with suitable interference filters, it can be used in the wavelength range 580 – 860 nm. The wavelength stability of the instrumental profile is very high, the maximum drift in 10 hours amounting to ≃10 m s−1. In this paper the criteria used in the design and the expected instrumental characteristics are described.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, C.W.: 1985, Astrophysical Quantities. The Athlon Press, London.Google Scholar
  2. Beckers, J.M.: 1998, Astron. Astrophys. Suppl. 129, 191.CrossRefADSGoogle Scholar
  3. Bendlin, C. and Volkmer, R.: 1995, Astron. Astrophys. Suppl. 112, 371.ADSGoogle Scholar
  4. Bendlin, C., Volkmer, R., and Kneer, F.: 1992, Astron. Astrophys. 257, 817.ADSGoogle Scholar
  5. Cavallini, F.: 1998, Astron. Astrophys. Suppl. 128, 589.CrossRefADSGoogle Scholar
  6. Cavallini, F., Berrilli, F., Cantarano, S., and Egidi, A.: 2000, in A. Wilson (ed.), The Solar Cycle and Terrestrial Climate, ESA Publications Division, Noordwijk, ESA SP-463, p. 607.Google Scholar
  7. Kentischer, T.J., Schmidt, W., Sigwarth, M., and von Uexküll, M.: 1998, Astron. Astrophys. 340, 569.ADSGoogle Scholar
  8. Koschinsky, M., Kneer, F., and Hirzberger, J.: 2001, Astron. Astrophys. 365, 588.CrossRefADSGoogle Scholar
  9. Loughhead, R.E., Bray, R.J., and Brown, N.: 1978, Appl. Opt. 17, 415.ADSGoogle Scholar
  10. Neidig, D., Wiborg, P., Mozer, J., Dalrymple, N., Dunn, R., Gregory, S., and Gullixson, C.: 2003, Bull. Am. Astron. Soc. 35, 848.ADSGoogle Scholar
  11. Netterfield, R.P. and Ramsay, J.V.: 1974, Appl. Opt. 13, 2685.ADSGoogle Scholar
  12. Ramsay, J.V.: 1969, Appl. Opt. 8, 569.ADSCrossRefGoogle Scholar
  13. Ramsay, J.V., Kobler, H., and Mugridge, E.G.V.: 1970, Solar Phys. 12, 492.ADSGoogle Scholar
  14. Rimmele, T.R., Richards, K., Hegwer, S.L. et al.: 2004, Proc. SPIE 5171, 179.ADSGoogle Scholar
  15. Steel, W.H.: 1967, Interferometry, Cambridge University Press, Cambridge, p. 125.Google Scholar
  16. Tritschler, A., Schmid, W., Langhans, K., and Kentischer, T.: 2002, Solar Phys. 211, 17.CrossRefADSGoogle Scholar
  17. Vaughan, J.M.: 1989, The Fabry-Perot interferometer: History, Theory, Practice and Applications. Adam Hilger, Bristol and Philadelphia.Google Scholar
  18. von der Lühe, O. and Kentischer, T.J.: 2000, Astron. Astrophys. 146, 499.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  1. 1.INAF: Osservatorio Astrofisico di ArcetriFirenzeItaly

Personalised recommendations