Advertisement

Solar Physics

, Volume 235, Issue 1–2, pp 433–437 | Cite as

A Note on Solar Cycle Length Estimates

Article

Abstract

Recently, new estimates of the solar cycle length (SCL) have been calculated using the Zurich Sunspot Number (RZ) and the Regression-Fourier-Calculus (RFC)-method, a mathematically rigorous method involving multiple regression, Fourier approximation, and analytical expressions for the first derivative. In this short contribution, we show estimates of the solar cycle length using the RFC-method and the Group Sunspot Number (RG) instead the RZ. Several authors have showed the advantages of RG for the analysis of sunspot activity before 1850. The use of RG solves some doubtful solar cycle length estimates obtained around 1800 using RZ.

Keywords

Fourier Solar Cycle Cycle Length Sunspot Number Group Sunspot 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Benestad, R.E.: 2005, Geophys. Res. Lett. 32, L15714. DOI: 10.1029/2005GL023621.CrossRefADSGoogle Scholar
  2. Damon, P.E. and Laut, P.: 2004, Eos Trans. AGU 85, 370.ADSGoogle Scholar
  3. Friis-Christensen, E. and Lassen, K.: 1991, Science 254, 698.ADSGoogle Scholar
  4. Hathaway, D.H., Wilson, R.M., and Reichmann, E.J.: 2002, Solar Phys. 211, 357.CrossRefADSGoogle Scholar
  5. Hoyt, D.V. and Schatten, K.H.: 1998, Solar Phys. 179, 189 (reprinted with figures from Solar Phys. 181, 491).CrossRefADSGoogle Scholar
  6. Kane, R.P.: 2002, Solar Phys. 205, 383.CrossRefADSGoogle Scholar
  7. Krivova, N.A., Solanki, S.K., and Beer, J.: 2002, Astron. Astrophys. 396, 235.CrossRefADSGoogle Scholar
  8. Laut, P.: 2003, J. Atmos. Sol. Terr. Phys. 65, 801.CrossRefADSGoogle Scholar
  9. McKinnon, J.A.: 1987, Sunspot Numbers: 1610–1985, National Geophysical Data Center, NOAA, Boulder, Colorado.Google Scholar
  10. Mursula, K. and Ulich, Th.: 1998, Geophys. Res. Lett. 25, 1837.CrossRefADSGoogle Scholar
  11. R Development Core Team: 2004, R: A Language and Environment for Statistical Computing, R Foundations for Statistical Computing, Vienna, Austria (available at http://www.R-project.org.
  12. Solanki, S.K., Krivova, N.A., Schussler, M., and Fligge, M.: 2002, Astron. Astrophys. 396, 1029.CrossRefADSGoogle Scholar
  13. Usoskin, I.G., Mursula, K., and Kovaltsov, G.A.: 2001, Astron. Astrophys. 370, L31.CrossRefADSGoogle Scholar
  14. Usoskin, I.G., Mursula, K., and Kovaltsov, G.A.: 2002, Geophys. Res. Lett. 29, 2183. DOI:10.1029/2002GL015640.CrossRefADSGoogle Scholar
  15. Usoskin, I.G., Mursula, K., and Kovaltsov, G.A.: 2003, Astron. Astrophys. 403, 743.CrossRefADSGoogle Scholar
  16. Usoskin, I.G. and Kovaltsov, G.A.: 2004, Solar Phys. 224, 37.CrossRefADSGoogle Scholar
  17. Vanlommel, P., Cugnon, P., van der Linden, R.A.M., Berghmans, D., and Clette, F.: 2004, Solar Phys. 224, 113.CrossRefADSGoogle Scholar
  18. Vaquero, J.M.: 2004, Solar Phys. 219, 379.CrossRefADSGoogle Scholar
  19. Vaquero, J.M., Trigo, R.M., and Gallego, M.C.: 2005, Astron. Nachr. 326, 112.CrossRefADSGoogle Scholar
  20. Waldmeier, M.: 1947, The Sunspot Activity in the Years 1610–1960, Zurich Schulthess and Company AG.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • J. M. Vaquero
    • 1
  • J. A. García
    • 2
  • M. C. Gallego
    • 2
  1. 1.Departamento de FísicaEscuela Politécnica, Universidad de ExtremaduraCáceresSpain
  2. 2.Departamento de Física, Facultad de CienciasUniversidad de ExtremaduraBadajozSpain

Personalised recommendations