Solar Physics

, Volume 234, Issue 1, pp 187–201 | Cite as

Mercury Transit for Stray Light Evaluation: IPM-THEMIS Case

Article

Abstract

Mercury's transit on the solar disk offers ideal conditions to determine the stray light level of instruments. We present here the results on the stray light level deduced from the observation of the Mercury transit on 2003 May 7th at the secondary focus of the THEMIS telescope with the broad-band and spectral channels of the IPM instrument. The scattered light in the broad-band channel is about 17% and about 25% in the spectral channel. The spread function was deduced for the two channels taking into account the observations on the limb and on Mercury's disk.

The goal of this paper is to underline the limits of determining the spread function from limb measurements to correct disk observations. Indeed, we show that if a diaphragm is located in the optical path of scattering surfaces, then the spread function deduced from limb measurements can be underestimated compared to the one required for disk observations. The case is illustrated with the results of the IPM-THEMIS instrument. The spread function deduced from limb measurements is able to correct disk observations in the broad-band channel but not in the spectral channel, even if the two channels are illuminated through the same telescope configuration.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albregtsen, F. and Maltby, P.: 1981, Solar Phys. 74, 147.CrossRefADSGoogle Scholar
  2. Albregtsen, F. and Andersen, B.N.: 1985, Solar Phys. 95, 239.CrossRefADSGoogle Scholar
  3. Barducci, A., Cavallini F., Ceppatelli, G., and Righini, A., 1990, Astron. Astrophys. 240, 203.ADSGoogle Scholar
  4. Cavallini, F.: 1998, Astron. Astrophysi. Suppl. Series, 128, 589.ADSGoogle Scholar
  5. Collados, M., Martínez Pillet, V., Ruiz Cobo, B., del Torn Iniesta, J. C., and Vázquez, M.: 1994, Astron. Astrophys. 291, 622.ADSGoogle Scholar
  6. De Lury, R. E.: 1939, J. R. Astron. Soc. Canada, 33(9), 345.ADSGoogle Scholar
  7. Kneer. F. and Mattig, W.: 1968, Solar Phys. 5, 42.CrossRefADSGoogle Scholar
  8. Köppen, J.: 1975, Solar Phys. 42, 325.CrossRefGoogle Scholar
  9. Koutchmy, O. and Koutchmy, S.: 1974, Astron. Astrophys. Suppl. Series, 13, 295.ADSGoogle Scholar
  10. Mainella, G., Briand. C., and Maréchal, L.: 2003, Astron. Nachr. 324(4), 309.CrossRefADSGoogle Scholar
  11. Maltby, P., 1971, Solar Phys. 18, 3.ADSGoogle Scholar
  12. Maltby, P. and Staveland, L.: 1971, Solar Phys. 18, 443.ADSGoogle Scholar
  13. Martínez Pillet, V., Ruiz Cobo, B., and Vázquez, M.: 1990, Solar Phys. 125, 211.ADSGoogle Scholar
  14. Mattig, W.: 1971, Solar Phys. 18, 484.CrossRefGoogle Scholar
  15. Mattig, W.: 1983, Solar Phys. 87, 187.CrossRefADSGoogle Scholar
  16. Molodij, G., Rayrole. J., Madec. P. Y. and Colson, F.: 1996, Astron. Astrophys. Suppl. Series, 118, 169.CrossRefADSGoogle Scholar
  17. Pierce, A. K. and Slaughter, C. D.: 1977, Solar Phys. 51, 25.CrossRefADSGoogle Scholar
  18. Schneider, G., Pasachoff, J. M., and Golub, L.: 2004, Icarus, 168, 249.CrossRefADSGoogle Scholar
  19. Staveland, L.: 1970, Solar Phys. 12, 328.CrossRefADSGoogle Scholar
  20. Wittmann, A. and Wöhl, U.: 1975, Solar Phys. 44, 231.CrossRefADSGoogle Scholar
  21. Wittman, A.: 1979, in “Small Scale Motions on the Sun”, Kiepenheuer-Institut für Sonnenphysik, Freiburg, p. 29.Google Scholar
  22. Zwaan, C.: 1965, Rech. Inst. Astron. Utrecht, 17, Part 4.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • C. Briand
    • 1
  • W. Mattig
    • 2
  • G. Ceppatelli
    • 3
    • 4
  • G. Mainella
    • 5
  1. 1.LESIAObservatoire de ParisMeudon CEDEX PrincipalFrance
  2. 2.Kiepenheuer-Institut für SonnenphysikFreiburgGermany
  3. 3.IACLa Laguna TenerifeSpain
  4. 4.On Leave from INAF-Osservatorio di ArcetriFirenzeItaly
  5. 5.Fundación Galileo Galilei – INAFSanta Cruz de La PalmaSpain

Personalised recommendations