Solar Physics

, Volume 235, Issue 1–2, pp 259–280 | Cite as

Coronal Magnetic Topologies in a Spherical Geometry I. Two Bipolar Flux Sources

  • R. C. Maclean
  • G. Hornig
  • E. R. Priest
  • C. Beveridge


The evolution of the solar corona is dominated to a large extent by the hugely complicated magnetic field which threads it. Magnetic topology provides a tool to decipher the structure of this field and thus help to understand its behaviour. Usually, the magnetic topology of a potential field is calculated due to flux sources on a locally planar photospheric surface. We use a Green's function method to extend this theory to sources on a global spherical surface. The case of two bipolar flux-balanced source regions is studied in detail, with an emphasis on how the distribution and relative strengths of the source regions affect the resulting topological states. A new state with two spatially distinct separators connecting the same two magnetic null points, called the “dual intersecting“ state, is discovered.


Bifurcation Diagram Solar Phys Null Point Spherical Geometry Topological State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Altschuler, M.D. and Newkirk, G.: 1969, Solar Phys. 9, 131.CrossRefADSGoogle Scholar
  2. Beveridge, C. and Longcope, D.W.: 2005, Solar Phys. 227, 193.CrossRefADSGoogle Scholar
  3. Beveridge, C., Priest, E.R., and Brown, D.S.: 2002, Solar Phys. 209, 333.CrossRefADSGoogle Scholar
  4. Beveridge, C., Priest, E.R., and Brown, D.S.: 2004, Geophys. Astrophys. Fluid Dyn. 98, 429.MathSciNetCrossRefADSGoogle Scholar
  5. Brown, D.S. and Priest, E.R.: 1999, Proc. R. Soc. Lond. A455, 3931.MathSciNetADSGoogle Scholar
  6. Brown, D.S. and Priest, E.R.: 2000, Solar Phys. 194, 197.CrossRefADSGoogle Scholar
  7. Gorbachev, V.S., Kel'ner, S.R., Somov, B.V., and Shvarts, A.S.: 1988, Astron. Zh. 65, 601.ADSGoogle Scholar
  8. Greene, J.M.: 1988, J. Geophys. Res. 93, 8583.ADSCrossRefGoogle Scholar
  9. Inverarity, G. and Priest, E.R.: 1999, Solar Phys. 186, 99.CrossRefADSGoogle Scholar
  10. Jackson, J.D.: 1962, Classical Electrodynamics, John Wiley and Sons, New York, p. 15.Google Scholar
  11. Lau, Y.-T. and Finn, J.M.: 1990, Astrophys. J. 350, 672.MathSciNetCrossRefADSGoogle Scholar
  12. Longcope, D.: 2005, Living Rev. Solar Phys., Articles/lrsp-2005-7/.
  13. Longcope, D.W. and Klapper, I.: 2002, Astrophys. J. 579, 468.CrossRefADSGoogle Scholar
  14. Lothian, R.M. and Browning, P.K.: 1995, Solar Phys. 161, 289.CrossRefADSGoogle Scholar
  15. Maclean, R.C., Beveridge, C., Longcope, D.W., Brown, D.S., and Priest, E.R.: 2005, Proc. R. Soc. A 461, 2099, DOI: 10.1098/rspa.2005/1448.MathSciNetCrossRefADSzbMATHGoogle Scholar
  16. Molodenskii, M.M. and Syrovatskii, S.I.: 1977, Sov. Astron. 21, 734.ADSGoogle Scholar
  17. Nemenman, I.M. and Silbergleit, A.S.: 1999, J. Appl. Phys. 86, 614.CrossRefADSGoogle Scholar
  18. Parnell, C.E.: 2002, Mon. Not. R. Astron. Soc. 335, 389.CrossRefADSGoogle Scholar
  19. Parnell, C.E., Smith, J.M., Neukirch, T., and Priest, E.R.: 1996, Phys. Plasmas 3, 759.CrossRefADSGoogle Scholar
  20. Priest, E.R. and Démoulin, P.: 1995, J. Geophys. Res. 100, 23443.CrossRefADSGoogle Scholar
  21. Priest, E.R. and Forbes, T.: 2000, Magnetic Reconnection: MHD Theory and Applications, Cambridge University Press, Cambridge, UK.zbMATHGoogle Scholar
  22. Priest, E.R. and Titov, V.S.: 1996, Philos. Trans. R. Soc. Lond. A 354, 2951.zbMATHMathSciNetADSCrossRefGoogle Scholar
  23. Priest, E.R., Bungey, T.N., and Titov, V.S.: 1997, Geophys. Astrophys. Fluid Dyn. 84, 127.MathSciNetCrossRefADSGoogle Scholar
  24. Priest, E.R., Longcope, D.W., and Heyvaerts, J.: 2005, Astrophys. J. 624, 1057.CrossRefADSGoogle Scholar
  25. Sakurai, T.: 1982, Solar Phys. 76, 301.CrossRefADSGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • R. C. Maclean
    • 1
  • G. Hornig
    • 1
  • E. R. Priest
    • 1
  • C. Beveridge
    • 2
  1. 1.Institute of MathematicsUniversity of St. AndrewsSt. Andrews, FifeU.K.
  2. 2.Department of PhysicsMontana State UniversityBozemanU.S.A.

Personalised recommendations