Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Which One is the ‘GNEVYSHEV’ GAP?

  • 80 Accesses

  • 19 Citations

Abstract

Gnevyshev [Solar Phys. 1, 107, 1967] showed that in solar cycle 19 (1954 –1965), the coronal line half-yearly average intensity at 5303 Å (green line) had actually two maxima, the first one in 1957 and the second in 1959–1960. In the present communication, the structures at solar maxima were reexamined in detail. It was noted that the two-peak structure of solar indices near sunspot (Rz) maxima was only a crude approximation. On a finer time scale (monthly values), there were generally more than three peaks, with irregular peak separations in a wide range of ∼12± 6 months. The sequences were seen simultaneously (within a month or two) at many solar indices (notably the 2800 MHz radio flux) at and above the photosphere, and these can be legitimately termed ‘Gnevyshev peaks’ and ‘Gnevyshev gaps’. The open magnetic flux emanating from the Sun showed this sequence partially, some peaks matching, others not. In interplanetary space, the interplanetary parameters N (number density), V (solar wind speed), B (magnetic field) showed short-time peak structures but mostly not matching with the Rz peaks. Geomagnetic indices (aa, Dst) had peaked structures, which did not match with Rz peaks but were very well related to V and B, particularly to the product VB. The cosmic ray (CR) modulation also showed peaks and troughs near sunspot maximum, but the matching with Rz peaks was poor. Hence, none of these can be termed Gnevyshev peaks and gaps, particularly the gap between aa peaks, one near sunspot maximum and another in the declining phase, as this gap is qualitatively different from the Gnevyshev gap in solar indices.

This is a preview of subscription content, log in to check access.

References

  1. Ahluwalia, H. S.: 2000, J. Geophys. Res. 105, 27481.

  2. Akasofu, S. I.: 1981, Space Sci. Review 28, 121.

  3. Antalová, H. and Gnevyshev, M. N.: 1965, Astron. Zhurn. 42, 253.

  4. Antalová, H. and Gnevyshev, M. N.: 1983, Contrib. Astron. Obs. Skalnaté Pleso 11, 63.

  5. Ataç, T. and Özgüç, A.: 2001, Solar Phys. 198, 399.

  6. Benevolenskaya, E. E.: 2003, Solar Phys. 216, 325.

  7. Benevolenskaya, E. E., Kosovichev, A. G., and Scherrer, P. H.: 2001, Astrophys. J. 554, L107.

  8. Benevolenskaya, E. E., Kosovichev, A. G., Lemen, J. R., Scherrer, P. H., and Slater, G. L.: 2002, Astrophys. J. 571, L181.

  9. Cane, H. V., Richardson, I. G., and von Rosenvinge, T. T.: 1996, J. Geophys. Res. 101, 21561.

  10. Crooker, N. U. and Gringauz, K. I.: 1993, J. Geophys. Res. 98, 59.

  11. Dorman, L. I.: 2001, Adv. Space Res. 27(3), 601.

  12. Dorman, L. I., Iucii, N., and Villoresi, G.: 2001, Adv. Space Res. 27(3), 595.

  13. Dorman, L. I., Dorman, I. V., Iucii, N., Parisi, M., and Villoresi, G.: 2001, Adv. Space Res. 27(3), 589.

  14. Echer, E., Gonzalez, W. D., Gonzalez, A. L. C., et al.: 2004, J. Atmos. Solar-Terr. Phys. 66, 1019.

  15. Feminella, F. and Storini, M.: 1997, Astron. Astrophys. 322, 311.

  16. Gnevyshev, M. N.: 1967, Solar Phys. 1, 107.

  17. Gnevyshev, M. N.: 1977, Solar Phys. 51, 175.

  18. Gonzalez, W. D., Gonzalez, A. L. C., and Tsurutani, B. T.: 1990, Planet. Space Sci. 38, 181.

  19. Harvey, K. L. and Recely, F.: 2002, Solar Phys. 211, 31.

  20. Jokipii, J. R. and Thomas, B.: 1981, Astrophys. J. 243, 1115.

  21. Kane, R. P.: 1997, Ann. Geophysicae 15, 1581.

  22. Kane, R. P.: 2002, Ann. Geophysicae 20, 741.

  23. Kane, R. P.: 2003, J. Geophys. Res. 108, A1, 1046, doi: 10.1029/2002JA009542.

  24. Kane, R. P.: 2005, J. Atmos. Solar-Terr. Phys. 67, 429.

  25. Li, J. K. and Gu, M. X.: 2000, Astron. Astrophys. 353, 396.

  26. Kota, J. and Jokipii, J. R.: 1983, Astrophys. J. 265, 573.

  27. Makarov, V. I. and Makarova, V. V.: 1996, Solar Phys. 163, 267.

  28. Mayaud, P. N.: 1973, IAGA Bull. 33, 262.

  29. Obridko, V. N. and Shelting, B. D.: 1992, Solar Phys. 137, 167.

  30. Richardson, I. G., Cliver, E. W., and Cane, H. V.: 2000, J. Geophys. Res. 105, 18203.

  31. Roy, J. R.: 1977, Solar Phys. 52, 53.

  32. Simpson, J. A.: 1954, Phys. Rev. 94, 426.

  33. Skoug, R. M., Gosling, J., Steinberg, J., McComas, D. J., Smith, C. W., Ness, N. F. et al.: 2004, J. Geophys. Res. 109, A09102, doi: 10.1029/2004JA010494.

  34. Snyder, C. W., Neugebauer, M., and Rao, U. R.: 1963, J. Geophys. Res. 68, 6361.

  35. Storini, M. and Pase, S.: 1995, in T. Watanabe (ed.), Proc. 2nd SOLTIP Symp., STEP GBRSC News, 5, (special issue), 255–258.

  36. Storini, M., Pase, S., Sýkora, J., and Parisi, M.: 1997, Solar Phys. 172, 317.

  37. Sugiura, M. and Poros, D. J.: 1971, GSFC Publication X-645-71-278, July.

  38. Sýkora, J.: 1980, in M. Dryer and E. Tandberg-Hanssen (eds.), Solar and Interplanetary Dynamics, D. Reidel Publ. Co., Dordrecht, p. 87.

  39. Temmer, M, Veronig, A., and Hanslmeir, A.: 2002, Astron. Astrophys. 390, 707.

  40. Tsurutani, B. T., Gonzalez, W. D., Gonzalez, A. L. C., Tang, F., Arballo, J. K., and Okada, M.: 1995, J. Geophys. Res. 100, 21717.

  41. Vernova, E. S., Mursula, K., Tyasto, M. I., and Baranov, D. G.: 2002, Solar Phys. 205, 371.

  42. Waldmeier, M.: 1957, Die Sonnencorona II, Birkäuser Verlag, Basel.

  43. Wang, Y.-M. and Sheeley, N. R.: 2002, J. Geophys. Res. 107(A10), 1302, doi: 10.1029/2001JA000500, SSH 10, 1–15, 2002.

  44. Webb, D. F. and Howard, R. A.: 1994, J. Geophys. Res. 99, 4201.

Download references

Author information

Correspondence to R. P. Kane.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kane, R.P. Which One is the ‘GNEVYSHEV’ GAP?. Sol Phys 229, 387–407 (2005). https://doi.org/10.1007/s11207-005-7451-7

Download citation

Keywords

  • Solar Wind
  • Solar Phys
  • Solar Wind Speed
  • Peak Structure
  • Geomagnetic Index