Advertisement

Solar Physics

, Volume 230, Issue 1–2, pp 91–109 | Cite as

The Total Irradiance Monitor (TIM): Instrument Design

  • Greg KoppEmail author
  • George Lawrence
Article

Abstract

The Total Irradiance Monitor (TIM) instrument is designed to measure total solar irradiance with an absolute accuracy of 100 parts per million. Four electrical substitution radiometers behind precision apertures measure input radiant power while providing redundancy. Duty cycling the use of the radiometers tracks degradation of the nickel-phosphorous absorptive black radiometer interiors caused by solar exposure. Phase sensitive detection at the shutter frequency reduces noise and simplifies the estimate of the radiometer's equivalence ratio. An as-designed uncertainty budget estimates the instrument's accuracy goal. The TIM measurement equation defines the conversion from measured signal to solar irradiance.

Keywords

Measured Signal Radiant Power Equivalence Ratio Solar Irradiance Measurement Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Foukal, P.: 2003, EOS Trans. AGU 84, 22, 205.Google Scholar
  2. Gundlach, J. H., Adelberger, E. G., Heckel, B. R., Swanson, and H. E.: 1996, Phys. Rev. D, 54, R1256.CrossRefADSGoogle Scholar
  3. Kopp, G., Heuerman, K., and Lawrence, G.: 2005, Solar Phys., this volume.Google Scholar
  4. Kopp, G., Lawrence, G., and Rottman, G.: 2003, SPIE Proc. 5171, 14.ADSGoogle Scholar
  5. Lawrence, G. M., Rottman, G., Harder, J., and Wood, T.: 2000, Metrologia 37, 407.CrossRefADSGoogle Scholar
  6. Lawrence, G. M., Kopp, G., Rottman, G., Harder, J., Woods, T., and Loui, H.: 2003, Metrologia 40, S78.CrossRefADSGoogle Scholar
  7. Lean, J., Beer, J., and Bradley, R.: 1995, Geophys. Res. Lett. 22, 3195.ADSGoogle Scholar
  8. Pang, K. D. and Yau, K. K.: 2002, EOS Trans. AGU 83, 43, 489.Google Scholar
  9. Rax, B. G., Lee, C. I., and Johnston, A. H.: 1997, IEEE Trans. Nuclear Sci. 44, 1939.CrossRefADSGoogle Scholar
  10. Rice, J. P., Lorentz, S. R., and Jung, T. M.: 1999, in: 10th Conference on Atmospheric Radiation, 28 June–2 July, Madison, Wisconsin (Preprint volume).Google Scholar
  11. Spreadbury, P. J.: 1991, IEEE Trans. Instrum. Meas. 40, 343.CrossRefGoogle Scholar
  12. Willson, R. C.: 1979, J. Appl. Opt. 18, 179.ADSGoogle Scholar
  13. Willson, R. C., Gulkis, S., Janssen, M., Hudson, H. S., and Chapman, G. A.: 1981, Science 211, 700.ADSGoogle Scholar
  14. Woods, T., Rottman, G., Harder, G., Lawrence, G., McClintock, B., Kopp, G. et al.: 2000, SPIE Proc. 4135, 192.ADSGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Laboratory for Atmospheric and Space PhysicsUniversity of ColoradoBoulder

Personalised recommendations