Advertisement

Solar Physics

, Volume 230, Issue 1–2, pp 325–344 | Cite as

The Mg II Index from SORCE

  • Martin SnowEmail author
  • William E. Mcclintock
  • Thomas N. Woods
  • Oran R. White
  • Jerald W. Harder
  • Gary Rottman
Article

Abstract

The Solar–Stellar Irradiance Comparison Experiment (SOLSTICE) and the Spectral Irradiance Monitor (SIM) on the Solar Radiation and Climate Experiment (SORCE) both measure the solar ultraviolet irradiance surrounding the Mg II doublet at 280 nm on a daily basis. The SIM instrument's resolution (1.1 nm) is similar to the Solar Backscatter Ultraviolet instruments used to compute the standard NOAA Mg II index, while SOLSTICE's resolution is an order of magnitude higher (0.1 nm). This paper describes the technique used to calculate the index for both instruments and compares the resulting time series for the first 18 months of the SORCE mission. The spectral resolution and low noise of the SOLSTICE spectrum produces a Mg II index with a precision of 0.6%, roughly a factor of 2 better than the low-resolution index measurement. The full-resolution SOLSTICE index is able to measure short-timescale changes in the solar radiative output that are lost in the noise of the low-resolution index.

Keywords

Spectral Resolution Index Measurement Radiative Output Climate Experiment Result Time Series 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. De Toma, G., White, O. R., Knapp, B. G., Rottman, G. J., and Woods, T. N.: 1997, J. Geophys. Res. 102, 2597.CrossRefADSGoogle Scholar
  2. Harder, J., Lawrence, G., Fontenla, J., Rottman, G., and Woods, T.: 2005, Solar Phys., this volume.Google Scholar
  3. Heath, D. F. and Schlesinger, B. M.: 1986, J. Geophys. Res. 91, 8672.ADSCrossRefGoogle Scholar
  4. Lean, J. L., Rottman, G., Kyle, H. L., Woods, T. N., Hickey, J. R., and Puga, L. C.: 1997, J. Geophys. Res. 102, 29,939.CrossRefADSGoogle Scholar
  5. McClintock, W., Rottman, G., and Woods, T.: 2005, Solar Phys., this volume.Google Scholar
  6. McClintock, W., Snow, M., and Woods, T.: 2005, Solar Phys., this volume.Google Scholar
  7. Rottman, G. J., Woods, T. N., and Sparn, T. P.: 1993, J. Geophys. Res. 98, 10,667.ADSGoogle Scholar
  8. Tobiska, W. K.: 1991, J. Atmos. Terr. Phys. 53, 1005.CrossRefADSGoogle Scholar
  9. Viereck, R. and Puga, L.: 1999, J. Geophys. Res. 104, 9995.CrossRefADSGoogle Scholar
  10. Viereck, R., Puga, L., McMullin, D., Judge, D., Weber, M., and Tobiska, W. K.: 2001, Geophys. Res. Lett. 28, 1343.CrossRefADSGoogle Scholar
  11. Viereck, R. A., Floyd, L. E., Crane, P. C., Woods, T. N., Knapp, B. G., Rottman, G., Weber, M., Puga, L. C., and DeLand, M. T.: 2004, Space Weather, 2, doi: 10.1029/2004SW000084, S10005.Google Scholar
  12. White, O. R., de Toma, G., Rottman, G. J., Woods, T. N., and Knapp, B. G.: 1998, Solar Phys. 177, 89.CrossRefADSGoogle Scholar
  13. Woodraska, D. L., Woods, T. N., and Eparvier, F. G.: 2004, Proc. SPIE Int. Soc. Opt. Eng. 5660, 36.Google Scholar
  14. Woods, T. N., Eparvier, F. G., Bailey, S. M., Chamberlin, P. C., Lean, J., Rottman, G. J., Solomon, S. C., Tobiska, W. K., and Woodraska, D. L.: 2004a, J. Geophys. Res. 110, A01312.Google Scholar
  15. Woods, T. N., Eparvier, F. G., Fontenla, J., Harder, J., Kopp, G., McClintock, W. E., Rottman, G., Smiley, B., and Snow, M.: 2004b, Geophys. Res. Lett. 31, 801.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Martin Snow
    • 1
    Email author
  • William E. Mcclintock
    • 1
  • Thomas N. Woods
    • 1
  • Oran R. White
    • 1
  • Jerald W. Harder
    • 1
  • Gary Rottman
    • 1
  1. 1.Laboratory for Atmospheric and Space PhysicsUniversity of ColoradoBoulderU.S.A.

Personalised recommendations