Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Direct and Indirect Thermospheric Heating Sources for Solar Cycles 21–23


Solar variability is often cast in terms of radiative emission and the associated long-term climate response; however, growing societal reliance on technology is creating more interest in day-to-day solar variability. This variability is associated with both solar radiative and solar wind emissions. In this paper we explore the combined effects of radiative and solar wind fluctuations at Earth. The fluctuations in radiative and geomagnetic power create an extended interval of solar maximum for the upper atmosphere. We use a trio of empirical models to estimate, over the last three solar cycles, the relative contributions of solar extreme ultraviolet (UV) power, Joule power, and particle kinetic power to the Earth’s upper atmosphere energy budget. Daily power values are derived from three source models. The SOLAR2000 solar irradiance specification model provides estimates of the daily extreme and far UV solar power input. Geomagnetic power is derived from a combination of satellite-estimated particle precipitation power and an empirical model of Joule power from hemispherically integrated estimates of high-latitude energy deposition. During the interval 1975 to 2003, the average daily contributions were: particles – 36 GW, Joule – 95 GW and solar – 464 GW for a total of 595 GW. Solar wind-driven geomagnetic power provided 22% of the total global upper atmospheric energy. In the top 15 power events, geomagnetic power contributed two-thirds of the total power budget. In each of these events, Joule power alone exceeded solar power. With rising activity, Joule power becomes the most variable element of solar upper atmosphere interactions.

This is a preview of subscription content, log in to check access.


  1. Chun, F. et al.: 1999, Geophys. Res. Lett. 26(8), 1101.

  2. Fröhlich, C. and Lean, J.: 1998, Total Solar Irradiance Variations, International Astronomical Union Symposium 185: New Eyes to See Inside the Sun and Stars, Kluwer Academic Publishers, Dordrecht, The Netherlands, p. 89.

  3. Fuller-Rowell, T. J. and Evans, D. S.: 1987, J. Geophys. Res. 92, 7606.

  4. Hardy, D. A., Gussenhoven, M. S. and Brautigam, D.: 1989, J. Geophys. Res. 94, 370.

  5. Hubert, B. et al.: 2002, J. Geophys. Res. 107, A11, doi: 10.1029/2002JA009205.

  6. Killeen, T. L. et al.: 1988, J. Geophys. Res. 93, 2675.

  7. Knipp, D. J. et al.: 1998, J. Geophys. Res. 103, 26197.

  8. Knipp, D. J. et al.: 2004, Adv. Space Res.

  9. Lu, G. et al.: 1998, J. Geophys. Res. 103, 11685.

  10. Rees, M. H., Emery, B., Roble, R., and Stamnes, K.: 1983, J. Geophys. Res. 88, 6289.

  11. Richmond, A. D. and Kamide, Y.: 1988, J. Geophys. Res. 93, 5741.

  12. Thayer, J. P. and Semeter, J.: 2004, J. Atmos. Solar Terr. Phys. 66, 807.

  13. Tobiska, W. K. and Bouwer, S. D.: 2004, Adv. Space Res.

  14. Tobiska, W. K., Woods, T. and Eparvier, F. et al.: 2000, J. Atmos. Solar Terr. Phys. 62, 1233.

  15. Torr, M. R., Torr, D. G. and Richards, P. G.: 1980, Geophys. Res. Lett. 7(5), 373.

  16. Troshichev, O., Andersen, V. G., Vennerstrom, S., and Friis-Christensen, E.: 1988, Planet. Space Sci. 36, 1095.

  17. Woods, T. N. et al.: 2000, Phys. Chem. Earth 25 (5–6), 393.

  18. Woods, T. et al.: 2004, Solar AGU Monograph, 10.1029/141GM11, p. 127.

Download references

Author information

Correspondence to D. J. Knipp.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Knipp, D.J., Tobiska, W.K. & Emery, B.A. Direct and Indirect Thermospheric Heating Sources for Solar Cycles 21–23. Sol Phys 224, 495 (2004). https://doi.org/10.1007/s11207-005-6393-4

Download citation


  • Solar Wind
  • Solar Cycle
  • Solar Power
  • Solar Variability
  • Atmospheric Energy