Advertisement

Solar Physics

, Volume 230, Issue 1–2, pp 141–167 | Cite as

The Spectral Irradiance Monitor: Scientific Requirements, Instrument Design, and Operation Modes

  • Jerald Harder
  • George Lawrence
  • Juan Fontenla
  • Gary Rottman
  • Thomas Woods
Article

Abstract

The Spectral Irradiance Monitor (SIM) is a dual Fèry prism spectrometer that employs 5 detectors per spectrometer channel to cover the wavelength range from 200 to 2700 nm. This instrument is used to monitor solar spectral variability throughout this wavelength region. Two identical, mirror-image, channels are used for redundancy and in-flight measurement of prism degradation. The primary detector for this instrument is an electrical substitution radiometer (ESR) designed to measure power levels ∼1000 times smaller than other radiometers used to measure TSI. The four complementary focal plane photodiodes are used in a fast-scan mode to acquire the solar spectrum, and the ESR calibrates their radiant sensitivity. Wavelength control is achieved by using a closed loop servo system that employs a linear charge coupled device (CCD) in the focal plane. This achieves 0.67 arcsec control of the prism rotation angle; this is equivalent to a wavelength positioning error of δλ/λ = 150 parts per million (ppm). This paper will describe the scientific measurement requirements used for instrument design and implementation, instrument performance, and the in-flight instrument operation modes.

Keywords

Focal Plane Operation Mode Servo System Instrument Design Spectral Variability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, G. P. et al.: 1999, SPIE Proc. 3866, 2.ADSGoogle Scholar
  2. Curcio, J. A. and Petty, C.: 1951, J. Opt. Soc. Am. 41, 302.ADSGoogle Scholar
  3. Harder, J. W., Lawrence, G. M., Rottman, G., and Woods, T. N.: 2000a, Metrologia 37, 415.CrossRefADSGoogle Scholar
  4. Harder, J. W., Lawrence, G., Rottman, G., and Woods, T.: 2000b, SPIE Proc. 4135, 204.ADSGoogle Scholar
  5. Harder, J. W., Fontenla, J., Lawrence, G., Woods, T., and Rottman, G.: 2005, Solar Phys., this volume.Google Scholar
  6. Havey, K., Mustico, A., and Vallimont, J.: 1992, SPIE Proc. 1761, 2.ADSGoogle Scholar
  7. Hengstberger, F.: 1989, Absolute Radiometry, Academic Press Inc., San Diego, California.Google Scholar
  8. Hood, L. L.: 1999, J. Atmos. Sol. Terr. Phys. 61, 45.CrossRefADSGoogle Scholar
  9. James, J. F. and Sternberg, R. S.: 1969, The Design of Optical Spectrometers, Chapman and Hall LTD, London, p. 41.Google Scholar
  10. Johnson, C. E.: 1980, Metal Finishing, 21.Google Scholar
  11. Kiehl, J. T. and Trenberth, K.: 1997, Bull. Am. Met. Soc. 78, 197.ADSGoogle Scholar
  12. Kopp, G., Lawrence, G. M., and Rottman, G.: 2003, SPIE Proc. 5171.Google Scholar
  13. Kurucz, R. L.: 1991, in A. N. Cox, W. C. Livingston, and M. S. Matthews (eds.), Solar Interior and Atmosphere, University of Arizona Press, Tucson, Arizona.Google Scholar
  14. Labitzske, K. and Van Loon, H.: 1988, J. Atmos. Sol. Terr. Phys. 50, 197.ADSGoogle Scholar
  15. Lawrence, G. M., Rottman, G., Harder, J., and Wood, T.: 2000, Metrologia 37, 415.CrossRefADSGoogle Scholar
  16. Lean, J. L.: 1991, Rev. Geophys. 29, 505.ADSGoogle Scholar
  17. London, J., Rottman, G., Woods, T., and Wu, F.: 1993, Geophys. Res. Lett. 20, 1315.ADSGoogle Scholar
  18. McClintock, W., Rottman, G., and Woods, T.: 2005, Solar Phys., this volume.Google Scholar
  19. Malitson, I. H.: 1965, J. Opt. Soc. Am. 55, 1205.ADSCrossRefGoogle Scholar
  20. Neckel, H. and Labs, D.: 1984, Solar Phys. 90, 205.CrossRefADSGoogle Scholar
  21. Reid, G. C.: 1991, J. Geophys. Res. 96, 2835.ADSGoogle Scholar
  22. Reid, G. C.: 1999, J. Atmos. Sol Terr. Phys. 61, 3.CrossRefADSGoogle Scholar
  23. Rottman, G. J., Woods, T., and Sparn, T.: 1993, J. Geophys. Res. 98, 10667.ADSCrossRefGoogle Scholar
  24. Rottman, G., Harder, J., Fontenla, J., Woods, T., White, O., and Lawrence, G.: 2005, Solar Phys., this volume.Google Scholar
  25. Smith, R. C. and Baker, K.: 1978, Limnol. Oceangr. 23, 260.Google Scholar
  26. Solanki, S. K. and Unruh, Y.: 1998, Astron. Astrophys. 329, 747.ADSGoogle Scholar
  27. Thuillier, G., Hersé, M., Labs, D., Foujols, T., Peetermans, W., Gillotay, D., Simon, P., and Mandel, H.: 2003, Solar Phys. 214, 1.CrossRefADSGoogle Scholar
  28. Vanhoosier, M. E., Bartoe, J.-D. F., Brueckner, G. E., Prinz, D. K., and Cook, J. W.: 1981, Solar Phys. 74, 521.CrossRefADSGoogle Scholar
  29. Viereck, R. and Puga, L.: 1999, J. Geophys. Res. 104, 9995.CrossRefADSGoogle Scholar
  30. Warren, D. A., Hackwell, J., and Gutierrez, D.: 1997, Opt. Eng. 3 6, 1174.Google Scholar
  31. White, W. R., Lean, J., Cayan, D., and Dettinger, M.: 1997, J. Geophys. Res. 102, 3255.ADSGoogle Scholar
  32. Willson, R. C.: 1988, Space Sci. Rev. 38, 203.ADSGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Jerald Harder
    • 1
  • George Lawrence
    • 1
  • Juan Fontenla
    • 1
  • Gary Rottman
    • 1
  • Thomas Woods
    • 1
  1. 1.Laboratory for Atmospheric and Space PhysicsUniversity of ColoradoBoulderU.S.A.

Personalised recommendations