Solar Physics

, Volume 229, Issue 1, pp 79–94 | Cite as

Non-Axisymmetric Oscillations of Thin Prominence Fibrils

  • M. V. Dymova
  • M. S. Ruderman


We study non-axisymmetric oscillations of thin prominence fibrils. A fibril is modeled by a straight thin magnetic tube with the ends frozen in dense plasmas. The density inside and outside the tube varies only along the tube and it is discontinuous at the tube boundary. Making a viable assumption that the tube radius is much smaller than its length, we show that the squares of the frequencies of non-axisymmetric tube oscillations are given by the eigenvalues of the Sturm–Liouville problem for a second-order ordinary differential equation on a finite interval with the zero boundary conditions. For an equilibrium density that is constant outside the tube and piecewise constant inside we derived a simple dispersion equation determining the frequencies of non-axisymmetric oscillations. We carry out a parametric study of this equation both analytically and numerically, restricting our analysis to the first even mode and the first odd mode. In particular, we obtained a criterion that allows to find out if each of these modes is a normal or leaky mode.


Fibril Dense Plasma Parametric Study Dispersion Equation Finite Interval 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abramowitz, M. and Stegun, A.: 1964, Handbook of Mathematical Functions, Wiley, New York.Google Scholar
  2. Ballester, J. L. and Priest, E. R.: 1989, Astron. Astrophys. 225, 213.Google Scholar
  3. Cally, P. S.: 1986, Solar Phys. 103, 277.CrossRefGoogle Scholar
  4. Cally, P. S.: 2003, Solar Phys. 217, 95.CrossRefGoogle Scholar
  5. Coddington, E. A. and Levinson, N.: 1955, Theory of Ordinary Differential Equations, McGraw-Hill, New York.Google Scholar
  6. Cowling, T. G.: 1960, Magnetohydrodynamics, Interscience, New York.Google Scholar
  7. Démoulin, P., Raadu, M., Schmieder, B., and Malherbe, J. M.: 1987, Astron. Astrophys. 183, 142.Google Scholar
  8. Diaz, A. J., Oliver, R., and Ballester, J. L.: 2002, Astrophys. J. 580, 550.CrossRefGoogle Scholar
  9. Diaz, A. J., Oliver, R., Erdélyi, R., and Ballester, J. L.: 2001, Astron. Astrophys. 379, 1083.CrossRefGoogle Scholar
  10. Dunn, R. B.: 1960, Ph.D. thesis, Harvard University.Google Scholar
  11. Edwin, P. M. and Roberts, B.: 1983, Solar Phys. 88, 179.CrossRefGoogle Scholar
  12. Engvold, O.: 2001, in J. L. Ballester and B. Roberts (eds.), INTAS Workshop on MHD Waves in Astrophysical Plasmas, Universitat de les Illes Balears, Spain, p. 123.Google Scholar
  13. Engvold, O., Kjeldseth-Moe, O., Bartoe, J. D. F. and Brueckner, G.: 1987, Proceedings of 21st ESLAB Symposium, ESA SP-275, 21.Google Scholar
  14. Goedbloed, J. P.: 1983, Lecture notes on ideal magnetohydrodynamics, Rijnhuizen Report 83–145.Google Scholar
  15. Joarder, P. S. and Roberts, B.: 1992, Astron. Astrophys., 261, 625.Google Scholar
  16. Joarder, P. S. and Roberts, B.: 1993, Astron. Astrophys., 277, 225.Google Scholar
  17. Joarder, P. S., Nakariakov, V., and Roberts, B.: 1997, Solar Phys. 173, 81.CrossRefGoogle Scholar
  18. Landau, L. D., Lifshitz, E. F., and Pitaevskii, L. P.: 1984, Electrodynamics of Continuous Media, Pergamon, Oxford.Google Scholar
  19. Nakariakov, V.: 2001, in J. L. Ballester and B. Roberts (eds.), INTAS Workshop on MHD Waves in Astrophysical Plasmas, Universitat de les Illes Balears, Spain, p. 79.Google Scholar
  20. Ofman, L. and Mouradian, Z.: 1996, Astron. Astrophys. 308, 631.Google Scholar
  21. Oliver, R. and Ballester, J. L.: 2002, Solar Phys. 206, 45.CrossRefGoogle Scholar
  22. Roberts, B.: 1991a, Geophys. Astrophys. Fluid Dynamics 62, 83.Google Scholar
  23. Roberts, B.: 1991b, in E. R. Priest and A. W. Hood (eds.), Advances in Solar System Magnetohydrodynamics, Cambridge University Press, p. 105.Google Scholar
  24. Roberts, B. and Joarder, P. S.: 1994, in G. Belvedere, M. Rodono, and G. M. Simnett (eds.), Advances in Solar Physics, Lecture Notes in Physics, 432, Springer-Verlag, Berlin, p. 173.Google Scholar
  25. Roberts, B., Edwin, P. M., and Benz, D. S.: 1984, Astrophys. J. 279, 857.CrossRefGoogle Scholar
  26. Ryutov, D. D. and Ryutova, M. P.: 1976, Sov. Phys. – JETP 43, 491.Google Scholar
  27. Schmieder, B. and Mein, P.: 1989, Hvar Obs. Bulletin 13, IAU Colloq. 119, 31.Google Scholar
  28. Schmieder, B., Raadu, M., and Wiik, J. E.: 1991, Astron. Astrophys. 252, 353.Google Scholar
  29. Simon, G., Schmieder, B., Démoulin, P., and Poland, A. I.: 1986, Astron. Astrophys. 166, 319.Google Scholar
  30. Uchida, Y.: 1970, Pub. Astron. Soc. Japan 22, 341.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Department of Applied MathematicsUniversity of SheffieldSheffieldU.K.

Personalised recommendations