Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

The Oscillations of Coronal Loops Including the Shell

  • 53 Accesses

  • 24 Citations


We investigate the MHD waves in a double magnetic flux tube embedded in a uniform external magnetic field. The tube consists of a dense hot cylindrical cord surrounded by a co-axial shell. The plasma and the magnetic field are taken to be uniform inside the cord and also inside the shell. Two slow and two fast magnetosonic modes can exist in the thin double tube. The first slow mode is trapped by the cord, the other is trapped by the shell. The oscillations of the second mode have opposite phases inside the cord and shell. The speeds of the slow modes propagating along the tube are close to the tube speeds inside the cord and the shell. The behavior of the fast modes depends on the magnitude of Alfvén speed inside the shell. If it is less than the Alfvén speed inside the cord and in the environment, then the fast mode is trapped by the shell and the other may be trapped under the certain conditions. In the opposite case when the Alfvén speed in the shell is greater than those inside the cord and in the environment, then the fast mode is radiated by the tube and the other may also be radiated under certain conditions. The oscillation of the cord and the shell with opposite phases is the distinctive feature of the process. The proposed model allows to explain the basic phenomena connected to the coronal oscillations: i) the damping of oscillations stipulated in the double tube model by the radiative loss, ii) the presence of two different modes of perturbations propagating along the loop with close speeds, iii) the opposite phases of oscillations of modulated radio emission, coming from the near coronal sources having sharply different densities.

This is a preview of subscription content, log in to check access.


  1. Aschwanden, M. J., Fletcher, L., Schrijver, C. J., and Alexander, D.: 1999, Astrophys. J. 520, 880.

  2. Aschwanden, M. J., Nightingale, R. W., Andries, J., et al.: 2003, Astrophys. J. 598, 1375.

  3. Bennett, K., Roberts, B., and Narain, U.: 1999, Solar Phys. 185, 857.

  4. De Moortel, I., Ireland, J., and Walsh, R. W.: 2000, Astron. Astrophys. 355, 41.

  5. De Moortel, I., Ireland, J., Hood, A. W., et al.: 2002, Astron. Astrophys. 387, L13.

  6. Edwin, P. M. and Roberts, B.: 1983, Solar Phys. 88, 179.

  7. Meerson, B. I., Sasorov, P. V., and Stepanov, A. V.: 1978, Solar Phys. 58, 165.

  8. Nakariakov, V. M., Ofman, L., Deluca, E., et al.: 1999, Science 285, 862.

  9. Nakariakov, V. M., Verwichte, E., Berghmans, D., et al.: 2000, Astron. Astrophys. 362, 1151.

  10. Ofman, L. and Aschwanden, M. J.: 2002, Astrophys. J. 576, L153.

  11. Qin, Z., Li, C., Fu, Q., et al.: 1996, Solar Phys. 163, 383.

  12. Robbrecht, E., Verwichte, E., Berghmans, D., et al.: 2001, Astron. Astrophys. 370, 591.

  13. Roberts, B.: 1981, Solar Phys. 69, 27.

  14. Roberts, B., Edwin, P. M., and Benz, A. O.: 1984, Astrophys. J. 279, 857.

  15. Ruderman, M. S.: 2003, Astron. Astrophys. 409, 287.

  16. Ruderman, M. S. and Roberts, B.: 2002, Astrophys. J. 577, 475.

  17. Spruit, H. S.: 1982, Solar Phys. 75, 3.

  18. Stenuit, H., Keppens, R., and Goossens, M.: 1998, Astron. Astrophys. 331, 392.

  19. Stenuit, H., Tirry, W. J., Keppens, R., et al.: 1999, Astron. Astrophys. 342, 863.

  20. Tsiklauri, D. and Nakariakov, V. M.: 2001, Astron. Astrophys. 379, 1106.

  21. Van Doorsselaere, T., Andries, J., Poedts, S., et al.: 2004, Astrophys. J. 606, 1223.

  22. Wilson, P. R.: 1980, Astron. Astrophys. 87, 21.

Download references

Author information

Correspondence to B. B. Mikhalyaev.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mikhalyaev, B.B., Solov’ev, A.A. The Oscillations of Coronal Loops Including the Shell. Sol Phys 227, 249–263 (2005). https://doi.org/10.1007/s11207-005-3186-8

Download citation


  • External Magnetic Field
  • Magnetic Flux
  • Radio Emission
  • Flux Tube
  • Radiative Loss