Solar Physics

, Volume 227, Issue 1, pp 39–60

Numerical Simulations of the Flux Tube Tectonics Model for Coronal Heating

  • C. Mellor
  • C. L. Gerrard
  • K. Galsgaard
  • A. W. Hood
  • E. R. Priest
Article
  • 77 Downloads

Abstract

In this paper we present results from 3D MHD numerical simulations based on the flux tube tectonics method of coronal heating proposed by Priest, Heyvaerts, and Title (2002). They suggested that individual coronal loops connect to the photosphere in many different magnetic flux fragments and that separatrix surfaces exist between the fingers connecting a loop to the photosphere and between individual loops. Simple lateral motions of the flux fragments could then cause currents to concentrate along the separatrices which may then drive reconnection contributing to coronal heating. Here we have taken a simple configuration with four flux patches on the top and bottom of the numerical domain and a small background axial field. Then we move two of the flux patches on the base between the other two using periodic boundary conditions such that when they leave the box they re-enter it at the other end. This simple motion soon causes current sheets to build up along the quasi-separatrix layers and subsequently magnetic diffusion/reconnection occurs.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Browning, P. K. and Hood, A.W.: 1989, Solar Phys. 124, 271.CrossRefGoogle Scholar
  2. Galsgaard, K. and Nordlund, A.: 1996, J. Geophys. Res. 101, 13445.CrossRefGoogle Scholar
  3. Galsgaard, K. et~al.: 2000, Astron. Astrophys. 362, 383.Google Scholar
  4. Galsgaard, K. et~al.: 2003, Astrophys. J. 595, 506.CrossRefGoogle Scholar
  5. Heyvaerts, J. F. and Priest, E. R.: 1983, Astron. Astrophys. 117, 220.Google Scholar
  6. Ionson, J. A.: 1978, Astrophys. J. 226, 650.CrossRefGoogle Scholar
  7. Longcope, D. W.: 1996, Solar Phys. 169, 91.CrossRefGoogle Scholar
  8. Lothian, R. M. and Hood, A. W.: 1989, Solar Phys. 122, 227.CrossRefGoogle Scholar
  9. Nordlund, A. and Galsgaard, K.: 1995, A 3D MHD code for Parallel Computers, Technical Report, Astronomical Observatory, Copenhagen University.Google Scholar
  10. Parker, E. N.: 1979, Cosmical Magnetic Fields, Oxford University Press, Oxford.Google Scholar
  11. Parker, E. N.: 1988, Astrophys. J. 330, 474.CrossRefGoogle Scholar
  12. Parnell, C. E.: 2001, Solar Phys. 200, 23.CrossRefGoogle Scholar
  13. Parnell, C. E.: 2002, Monthly Notices Royal Astron. Soc. 335, 389–398.Google Scholar
  14. Parnell, C. and Galsgaard, K.: 2004, Astron. Astrophys. 428, 595.CrossRefGoogle Scholar
  15. Priest, E. R. and Demoulin, P.: 1995, J. Geophys. Res. 100, 23443–23464.CrossRefGoogle Scholar
  16. Priest, E. R., Heyvaerts, J. F. and Title, A. M.: 2002, Astrophys. J. 576, 533.CrossRefGoogle Scholar
  17. Roussev, I., Galsgaard, K. and Judge, P. G.: 2002, Astron. Astrophys. 382, 639–649.CrossRefGoogle Scholar
  18. Simon, G. I., Title, A. M. and Weiss, N. O.: 2001, Astrophys. J. 561, 427.Google Scholar
  19. Titov, V. S. et~al.: 2003, Astrophys. J. 582, 1172.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • C. Mellor
    • 1
  • C. L. Gerrard
    • 1
  • K. Galsgaard
    • 2
  • A. W. Hood
    • 1
  • E. R. Priest
    • 1
  1. 1.School of Mathematics and StatisticsUniversity of St. AndrewsFifeScotland
  2. 2.Niels Bohr Institute for Astronomy, Physics and GeophysicsAstronomical ObservatoryDenmark

Personalised recommendations