Social Indicators Research

, Volume 139, Issue 1, pp 119–146 | Cite as

Socioeconomic Classification of the Working-Age Brazilian Population: A Joint Latent Class Analysis Using Social Class and Asset-Based Perspectives

  • André Junqueira CaetanoEmail author
  • José G. Dias


This paper presents and applies a methodology of socioeconomic classification that integrates asset- and social class approaches. We employ data from the 2013 Brazilian National Household Survey and use latent class analysis to identify clusters and classify the working population. With regard to social class the Brazilian occupations are classified based on the European Socioeconomic Classification (ESeC) schema and an indicator of employment status. As for household wealth, we use the items related to household condition, ownership of durable goods and access to public services with the highest discriminatory power. We also make use of variables that account for the Brazilian spatial and socio-demographic heterogeneity. We found four clusters which we term latent socioeconomic stratum (LSeS). When compared we found an ordered pattern from the best-off LSeS (1) to the worst-off (4) with respect to household wealth and ESeC classes. Nevertheless, although the class composition of each LSeS reveals a distinct concentration of specific ESeC classes, all classes are present in each LSeS. Controlling for social class, differences in household wealth are more marked between LSeS than between social classes within the same LSeS. Hence, the methodology unveils the latent socioeconomic strata, reveals a class schema for each stratum and points out potential stratum fractions within them. The results were validated using variables external to the model, namely household food security status and years of schooling. The external validation revealed the same ordered pattern and the presence of stratum fractions.


Socioeconomic classification Social class Asset-based approach Latent class analysis Brazil 



Support for this research was provided by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) Grant 309272/2011-4, Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) Grant BEX4385/13-6, and Fundação para a Ciência e Technologia (Portugal), UID/GES/00315/2013. The authors would like to thank an anonymous referee for his/her constructive inputs.


  1. Balen, J., McManus, D., Li, Y.-S., Zhao, Z.-Y., Yuan, L.-P., Utzinger, J., et al. (2010). Comparison of two approaches for measuring household wealth via an asset-based index in rural and peri-urban settings of Hunan province, China. Emerging Themes in Epidemiology, 7(1), 7.CrossRefGoogle Scholar
  2. Bartholomew, D., & Knott, M. (1999). Latent variables models and factor analysis. London: Edward Arnold.Google Scholar
  3. Blau, P. M. (1977). A macrosociological theory of social structure. The American Journal of Sociology, 83(1), 26–54.CrossRefGoogle Scholar
  4. Bollen, K. A., Glanville, J. L., & Stecklov, G. (2001). Socioeconomic status and class in studies of fertility and health in developing countries. Annual Review of Sociology, 27(1), 153–185. doi: 10.1146/annurev.soc.27.1.153.CrossRefGoogle Scholar
  5. Booysen, F., van der Berg, S., Burger, R., Maltitz, M. V., & Rand, G. D. (2008). Using an asset index to assess trends in poverty in seven sub-saharan African countries. World Development, 36(6), 1113–1130. doi: 10.1016/j.worlddev.2007.10.008.CrossRefGoogle Scholar
  6. Bourdieu, P. (1987). What makes a social class? On the theoretical and practical existence of groups. Berkeley Journal of Sociology, 32, 1–17. doi: 10.2307/41035356.Google Scholar
  7. Braveman, P. A., Cubbin, C., Egerter, S., Chideya, S., Marchi, K. S., Metzler, M., et al. (2005). Socioeconomic status in health research: One size does not fit all. Journal of American Medical Association, 294(22), 2879–2888. doi: 10.1001/jama.294.22.2879.CrossRefGoogle Scholar
  8. Breen, R., & Jonsson, J. O. (2005). Inequality of opportunity in comparative perspective: Recent research on educational attainment and social mobility. Annual Review of Sociology, 31, 223–243.CrossRefGoogle Scholar
  9. Bukodi, E., & Goldthorpe, J. H. (2013). Decomposing ‘social origins’: The effects of parents’ class, status, and education on the educational attainment of their children. European Sociological Review, 29(5), 1024–1039. doi: 10.1093/esr/jcs079.CrossRefGoogle Scholar
  10. Chan, T. W., & Goldthorpe, J. H. (2007). Class and status: The conceptual distinction and its empirical relevance. American Sociological Review, 72(4), 512–532.CrossRefGoogle Scholar
  11. Cirino, P. T., Chin, C. E., Sevcik, R. A., Wolf, M., Lovett, M., & Morris, R. D. (2002). Measuring socioeconomic status: reliability and preliminary validity for different approaches. Assessment, 9(2), 145–155. doi: 10.1177/10791102009002005.CrossRefGoogle Scholar
  12. Collins, L. M., & Lanza, S. T. (2010). Latent class and latent transition analysis: With applications in the social, behavioral, and health sciences. Hoboken: Wiley.Google Scholar
  13. Connelly, R., Gayle, V., & Lambert. P. S. (2016). A review of occupation-based social classifications for social survey research. Methodological Innovations, 9. doi: 10.1177/2059799116638003.
  14. Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm (with discussion). Journal of the Royal Statistical Society, 39(B), 1–38.Google Scholar
  15. Duncan, G. J., Daly, M. C., McDonough, P., & Williams, D. R. (2002). Optimal indicators of socioeconomic status for health research. American Journal of Public Health, 92(7), 1151–1157.CrossRefGoogle Scholar
  16. Erikson, R., & Goldthorpe, J. H. (1992a). The constant flux. Oxford: Clarendon Press.Google Scholar
  17. Erikson, R., & Goldthorpe, J. H. (1992b). Individual or family? Results from two approaches to class assignment. Acta Sociologica, 35(2), 95–105.CrossRefGoogle Scholar
  18. Erikson, R., & Goldthorpe, J. H. (2002). Intergenerational inequality: A sociological perspective. The Journal of Economic Perspectives, 16(3), 31–44. doi: 10.2307/3216948.CrossRefGoogle Scholar
  19. Erikson, R., & Goldthorpe, J. H. (2010). Has social mobility in Britain decreased? Reconciling divergent findings on income and class mobility. The British Journal of Sociology, 61(2), 211–230. doi: 10.1111/j.1468-4446.2010.01310.x.CrossRefGoogle Scholar
  20. Erikson, R., Goldthorpe, J. H., & Portocarero, L. (1979). Intergenerational class mobility in three western European societies: England, France and Sweden. The British Journal of Sociology, 30(4), 415–441. doi: 10.2307/589632.CrossRefGoogle Scholar
  21. Filmer, D., & Pritchett, L. H. (2001). Estimating wealth effects without expenditure data—or tears: An application to educational enrollments in states of India. Demography, 38(1), 115–132.Google Scholar
  22. Friedman, D. (1957). A theory of the consumption function. Princeton: Princeton University Press.Google Scholar
  23. Galobardes, B., Shaw, M., Lawlor, D. A., Lynch, J. W., & Davey Smith, G. (2006). Indicators of socioeconomic position (part 1). Journal of Epidemiology and Community Health, 60(1), 7–12. doi: 10.1136/jech.2004.023531.CrossRefGoogle Scholar
  24. Goldthorpe, J. H. (2000). Rent, class conflict, and class structure: A commentary on Sorenson. American Journal of Sociology, 105(6), 1572–1582. doi: 10.1086/210465.CrossRefGoogle Scholar
  25. Goodman, L. A. (1974). Exploratory latent structure analysis using both identifiable and unidentifiable models. Biometrika, 61(2), 215–231.CrossRefGoogle Scholar
  26. Grusky, D. B. (2001). Social Stratification: class, race, and gender in sociological perspective (2nd ed.). Boulder, Colorado: Westview Press.Google Scholar
  27. Hagenaars, J. A., & McCutcheon, A. L. (2002). Applied latent class analysis. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  28. Hauser, R. M., & Warren, J. R. (1997). Socioeconomic indexes for occupations: A review, update, and critique. Sociological Methodology, 27(1), 177–298. doi: 10.1111/1467-9531.271028.CrossRefGoogle Scholar
  29. House, J. S., Lepkowski, J. M., Kinney, A. M., Mero, R. P., Kessler, R. C., & Herzog, A. R. (1994). The social stratification of aging and health. Journal of Health and Social Behavior, 35(3), 213–234. doi: 10.2307/2137277.CrossRefGoogle Scholar
  30. Howe, L. D., Hargreaves, J. R., Gabrysch, S., & Huttly, S. R. (2009). Is the wealth index a proxy for consumption expenditure? A systematic review. Journal of Epidemiology and Community Health, 63(11), 871–880. doi: 10.1136/jech.2009.088021.CrossRefGoogle Scholar
  31. Howe, L. D., Hargreaves, J. R., & Huttly, S. R. A. (2008). Issues in the construction of wealth indices for the measurement of socio-economic position in low-income countries. Emerging Themes in Epidemiology, 5, 3.CrossRefGoogle Scholar
  32. Ichoku, H. E. (2011). On the use of socioeconomic status indicators in the analysis of health inequalities and poverty in Africa. Journal of International Development, 23(7), 1004–1012. doi: 10.1002/jid.1697.CrossRefGoogle Scholar
  33. International Labour Office. Seventeenth international conference of labour statisticians. In Geneva, Nov 24th–Dec 3rd 2003 (Vol. ICLS/17/2003/4): ILO.Google Scholar
  34. Jarman, J., Blackburn, R. M., & Racko, G. (2012). The dimensions of occupational gender segregation in industrial countries. Sociology, 46(6), 1003–1019. doi: 10.1177/0038038511435063.CrossRefGoogle Scholar
  35. Kamakura, W. A., & Mazzon, J. A. (2013). Socioeconomic status and consumption in an emerging economy. International Journal of Research in Marketing, 30(1), 4–18. doi: 10.1016/j.ijresmar.2011.12.001.CrossRefGoogle Scholar
  36. Keister, L. A. (2014). The one percent. Annual Review of Sociology, 40(1), 347–367. doi: 10.1146/annurev-soc-070513-075314.CrossRefGoogle Scholar
  37. Lazarsfeld, P. F., & Henry, N. W. (1968). Latent structure analysis. New York: Houghton Mifflin.Google Scholar
  38. Lucchini, M., & Schizzerotto, A. (2010). Unemployment risks in four EU countries: A validation study of the ESeC. In D. Rose & E. Harrison (Eds.), Social class in Europe: An introduction to the European socio-economic classification (pp. 324, Studies in European Sociology). Abingdon: Routledge.Google Scholar
  39. Madalozzo, R. (2010). Occupational segregation and the gender wage gap in Brazil: An empirical analysis. Economia Aplicada, 14, 147–168.CrossRefGoogle Scholar
  40. McCutcheon, A. L. (1987). Latent class analysis (Vol. 64, Quantitative Applications in the Social Sciences). Newbury Park, CA: Sage Publications Inc.Google Scholar
  41. McKenzie, D. J. (2005). Measuring inequality with asset indicators. Journal of Population Economics, 18(2), 229–260. doi: 10.1007/s00148-005-0224-7.CrossRefGoogle Scholar
  42. McLachlan, G. J., & Basford, K. E. (1988). Mixture models. New York: Marcel Dekker.Google Scholar
  43. McLachlan, G. J., & Peel, D. (2000). Finite mixture models. New York: Wiley.CrossRefGoogle Scholar
  44. Pevalin, D., & Rose, D. (2002). The National Statistics Socio-Economic Classification: Unifying oficial and sociologial approaches to the conceptualisation and measurement of social class in the United Kingdom. Societé Contemporaines, 9, 45–46.Google Scholar
  45. PNAD Pesquisa Nacional por Amostra de Domicílio (2013). Instituto Brasileiro de Estatística e Geografia (IBGE).
  46. Rose, D., & Harrison, E. (2007). The European socio-economic classification: A new social class schema for comparative European research. European Societies, 9(3), 459–490.CrossRefGoogle Scholar
  47. Rose, D., & Harrison, E. (2010). Social class in Europe: An introduction to the European socio-economic classification. Abingdon: Routledge.Google Scholar
  48. Rose, D., Harrison, E., & Pevalin, D. (2010). The European socio-economic classification: A prolegomenon. In D. Rose & E. Harrison (Eds.), Social class in Europe: An introduction to the European socio-economic classification (pp. 324, Studies in European Sociology). Abingdon: Routledge.Google Scholar
  49. Rutstein, S. O., & Johnson, K. (2004). The DHS wealth index. DHS comparative reports. Calverton, Maryland: ORC Macro.Google Scholar
  50. Schneider, D., & Hastings, O. P. (2015). Socioeconomic variation in the effect of economic conditions on marriage and nonmarital fertility in the United States: Evidence from the great recession. Demography, 52(6), 1893–1915. doi: 10.1007/s13524-015-0437-7.CrossRefGoogle Scholar
  51. Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6, 461–464.CrossRefGoogle Scholar
  52. Smits, J., & Steendijk, R. (2015). The international wealth index (IWI). Social Indicators Research, 122(1), 65–85. doi: 10.1007/s11205-014-0683-x.CrossRefGoogle Scholar
  53. Vyas, S., & Kumaranayake, L. (2006). Constructing socio-economic status indices: How to use principal components analysis. Health Policy and Planning, 21(6), 459–468. doi: 10.1093/heapol/czl029.CrossRefGoogle Scholar
  54. Weber, M. (1978). Economy and society (Vol. 1). Berkeley: University of California Press.Google Scholar
  55. Wright, E. O. (1989). Women in the class structure. Politics and Society, 17(1), 35–66. doi: 10.1177/003232928901700102.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Universidade Católica de Minas GeraisBelo HorizonteBrazil
  2. 2.Instituto Universitário de Lisboa (ISCTE-IUL), BRULisbonPortugal

Personalised recommendations