Social Indicators Research

, Volume 134, Issue 3, pp 1009–1026 | Cite as

Longitudinal Factor Analysis of Public Expenditure Composition and Human Development in Brazil After the 1988 Constitution

  • Rossana Guerra de Sousa
  • Edilson Paulo
  • João Marôco
Article
  • 128 Downloads

Abstract

The way public policies are managed in Brazil has changed since the 1988 Federal Constitution. This study aimed to identify how changes in the structure of public expenditure composition at Brazilian federal states influenced local human development in these states. The states’ public expenditures were categorized according to their nature as spending indices whereas human development was measured through a human development index (HD). To verify the relationships between these variables, an accounting-social theoretical model was created and estimated through latent growth modeling (LGM). The LGM measurement period comprised five administration cycles of the Brazilian states (1988–2011). Variables were measured on data of the second year of state government term; their mean initial values and growth rates were recorded. Results show that, influenced by policies of centralized regulation promoted by the federal government, only the social spending growth rates had statistically significant effect on the human development growth rate, although not considered of great magnitude. Among mean initial values, the most significant was that of minimum spending (SIm), which denotes the direct impact of the Fiscal Accountability Law [Lei de Responsabilidade Fiscal, in Portuguese] on human development improvements. The mean initial value of economic spending also showed a positive and significant effect on HD growth rate.

Keywords

Public expenditure Human development Public policies 

References

  1. Arretche, M. (2004). Federalismo e Políticas Sociais no Brasil: problemas de coordenação e autonomia. São Paulo em Perspectiva, 18(2), 17–26.CrossRefGoogle Scholar
  2. Arretche, M., & Vazquez, D. (2009). Descentralização, instituições políticas e autonomia: padrões de gasto dos governos locais no Brasil. Rio de Janeiro: Congress of the Latin American Studies Association.Google Scholar
  3. Bittencourt, J. L. (2002). Evidencias de ciclo político na economia brasileira: um teste para execução orçamentária dos governos estaduais 1983/2000.2002. Dissertação de Mestrado. Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil.Google Scholar
  4. Bollen, K., & Curran, P. J. (2006). Latent curve models: A structural equation perspective. Hoboken, NJ: Wiley.Google Scholar
  5. Byrne, B. M. (1998). Structural equation modeling with LISREL, PRELIS and SIMPLIS: Basic concepts, applications, and programming. New Jersey: Lawrence Erblaum Associates Publisher.Google Scholar
  6. Chen, F., Curran, P. J., Bollen, K. A., Kirby, J., & Paxton, P. (2008). An empirical evaluation of the use of fixed cutoff points in RMSEA test statistic in structural equation models. Social Methods, 36(4), 462–494.CrossRefGoogle Scholar
  7. Cole, D. A., & Ciesla, J. A. (2012) Latent variable modeling of continuous growth. Chapter IX. In H. Cooper (Ed.), APA handbook of research methods in psychology (Vol. 3, No. 15). Washington, DC: Data Analysis and Research Publication.Google Scholar
  8. Curran, P. J., Obeidat, K., & Losardo, D. (2010). Twelve frequently asked questions about growth curve modeling. Journal of Cognition and Development, 11(2), 121–136.CrossRefGoogle Scholar
  9. Gao, S., Mokhtarian, P., & Johnston, R. A. (2008). Nonnormality of data in structural equation models. Transportation Research Record: Journal of the Transportation Research Board, 2082, 116–124.CrossRefGoogle Scholar
  10. Hair, J. F., Jr., Black, W. C., Babin, B. J., Anderson, R. E., & Tatham, R. L. (2009). Análise Multivariada de Dado s. Porto Alegre: Bookman.Google Scholar
  11. Harell, F. E., Jr. (2001). Regression modeling strategies: With application to linear models, logistic regression and survival analysis. New York: Springer.CrossRefGoogle Scholar
  12. Hart, R. A., Jr. & Clark, D. H. (1999). Does size matter? Exploring the small sample properties of maximum likelihood estimation. Annual Meeting of the midwest political science association. Seen on April 15 at www.polmeth.wustl.edu/media/Paper/hart99.pdf.
  13. Hox, J. J., & Bechger, T. M. (1998). An introduction to structural equation modeling. Family Science Review, 11, 354–373.Google Scholar
  14. Instituto Brasileiro de Geografia e Estatística. (2012). Banco de Dados Agregados. Tabela de População Residente.Google Scholar
  15. Instituto de Pesquisa Economica Aplicada. (2007). Políticas Sociais Acompanhamento e Análise. Seen on September 20, 2013 at http://www.ipea.gov.br/portal/.
  16. Kenny, D. A. (2012). Measuring model fit. Seen on September 20, 2013 at http://davidakenny.net/cm/fit.htm#RMSEA.
  17. Kenny, D. A, Kaniskan, B., & McCoach, D. B. (2011). The performance of RMSEA in models with small degrees of freedom. Unpublished paper. University of Connecticut.Google Scholar
  18. Kline, R. B. (2005). Principles and practice of structural equations modeling (2nd ed.). New York: The Guilford Press.Google Scholar
  19. Lima, L. D., Machado, C. V., & Gerassi, C. D. (2011). O neo-institucionalismo e a análise de políticas de saúde: contribuições para uma reflexão crítica. In R. A. Mattos & T. W. F. Batista (Eds) Caminhos para análise das políticas de saúde, pp. 111–137.Google Scholar
  20. Marôco, J. (2010). Análise de Equações Estruturais: Fundamentos Teóricos, Software & Aplicações. Pêro Pinheiro: Report Number.Google Scholar
  21. Potthoff, R. F., & Roy, S. N. (1964). A generalized multivariate analysis of variance model useful especially for growth curve. Biometrika, 51(3/4), 313–326.CrossRefGoogle Scholar
  22. Preacher, K. J., Wichman, A. L., MacCallum, R. C., & Briggs, N. E. (2008). Latent growth curve modeling. Beverly Hills: Sage.CrossRefGoogle Scholar
  23. Qureshi, M. A. (2009). Human development, public expenditure and economic growth: A system dynamics approach. International Journal of Social Economics, 36(1/2), 93–104.CrossRefGoogle Scholar
  24. Ranis, G., & Stewart, F. (2000). Strategies for success in human development. Journal of Human Development, 1(1), 49–69.CrossRefGoogle Scholar
  25. Ranis, G., & Stewart, F. (2005). Dynamic Links between the economy and human development [Working Paper nº 8.]. New York: United Nations, DESA—Department of Economic and Social Affair.Google Scholar
  26. Raykov, T., & Marcoulides, G. A. (2006). A first course in structural equation modeling (2nd ed.). Mahwah: Lawrence Erlbaum Associates.Google Scholar
  27. Rezende, F. C. (1997). Descentralização, Gastos Públicos e Preferências Alocativas dos Governos Locais no Brasil (1980–1994). Dados. Revista de Ciências Sociais, 40(3), 413–440.Google Scholar
  28. Rezende, F. C. (2002). Gastos Públicos e Transformações Recentes no Papel do Estado Nacional: uma análise comparada entre países desenvolvidos e em desenvolvimento. Novos Estudos Cebrap, 62(March), 123–140.Google Scholar
  29. Rigdon, E. (2009). What is structural equation modeling. Seen on March 10, 2013 at www.2.gsu.edu/~mkteer/sem.html.
  30. Scartascini, C., Stein, E., & Tommasi, M. (2009). Political institutions, intertemporal cooperation and the quality of policies [Working Paper Nº676]. Research Department, Inter-American Development Bank.Google Scholar
  31. Sen, A. (1999). Development as freedom. Oxford: Oxford University Press.Google Scholar
  32. Stiglitz, J. E. (2000). Economics of the public sector (3rd ed.). New York: Norton & Company.Google Scholar
  33. Ullman, J. B. (2006). Structural equation modeling: Reviewing the basics and moving forward. Journal of Personality Assessment, 87(1), 35–50.CrossRefGoogle Scholar
  34. Ullman, J. B., & Bentler, P. M. (2013). Structural equation modeling handbook of psychology (2nd ed.). New York: Wiley.Google Scholar
  35. United Nations Development Program. (1991). Human development report. New York: United Nations Development Program.Google Scholar
  36. United Nations Development Program. (2013). Human development report. New York: United Nations Development Program.Google Scholar
  37. World Bank. (2009). O gasto público na redução da pobreza. Seen on February 10, 2012 at siteresources.worldbank.org

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Departamento de Finanças e ContabilidadePrograma Multiinstitucional e Inter-regional de Pós-Graduação em Ciências Contábeis (UnB/UFPB/UFRN)João PessoaBrazil
  2. 2.Departamento de Finanças e ContabilidadeUniversidade Federal da Paraíba (UFPB)João PessoaBrazil
  3. 3.Departamento de Ciências Psicológicas, ISPAInstituto Universitário de Ciências Psicológicas, Sociais e da VidaLisbonPortugal

Personalised recommendations