Advertisement

Social Indicators Research

, Volume 130, Issue 1, pp 189–212 | Cite as

Estimating Homelessness in the Netherlands Using a Capture-Recapture Approach

  • A. M. Coumans
  • M. Cruyff
  • P. G. M. Van der Heijden
  • J. Wolf
  • H. Schmeets
Article

Abstract

This study focuses on the homeless population in the Netherlands, as an indicator of social exclusion. By applying the capture-recapture (CRC) methodology to three registers, not only the size of the homeless population could be estimated, but also its composition in terms of gender, age, place of living, and origin could be depicted. Because of the use of three registers and the availability of background characteristics for each of the registers, the usual stringent assumptions of capture recapture methodology is circumvented. This advanced application of CRC to estimate the homeless population on the national level, has led to official figures for five subsequent reference dates (January 1st of 2009, 2010, 2011, 2012 and 2013). In 2009 the size of the total homeless population in the Netherlands was estimated at 17,767, of which 5169 were registered on one of the three lists. Between 2009 and 2012 the estimated size of the population increased, which was largely due to the financial crisis. For all reference dates, the composition of this population showed that generally more men than women were registered and that homeless people in the age category of 30–49 years old were registered more than the younger or older age groups. Compared to the general Dutch population, the homeless population includes relatively many men, many people aged 30–49 years and people with a non-western background.

Keywords

Homelessness Population size estimation CRC Background characteristics 

Notes

Acknowledgments

We thank Jacqueline van Beuningen for her help with the model selection procedure. Also, we are grateful for the anonymous reviewers’ constructive and thoughtful comments to our manuscript.

References

  1. Amore, K., Baker, M., & Howden-Chapman, P. (2011). The ETHOS definition and classification of homelessness: An analysis. European Journal of Homelessness, 5(2), 19–37. Google Scholar
  2. Baker, R. (1990). Pobability estimation and information principles. Structural Safety, 9(2), 97–116.CrossRefGoogle Scholar
  3. Beata, D., & Snijders, T. A. B. (2002). Estimating the size of the homeless population in Budapest, Hungary. Quality and Quantity, 36, 291–303.CrossRefGoogle Scholar
  4. Benjaminsen, L., & Dyb, E. (2008). The effectiveness of homeless policies—Variations among Scandinavian Countries. European Journal of Homelessness, 2, 45–67.Google Scholar
  5. Berry, B. (2007). A repeated observation approach for estimating the street homeless population. Evaluation Review, 31(2), 166–199.CrossRefGoogle Scholar
  6. Bishop, Y. M. M., Fienberg, S. E., & Holland, P. W. (1975). Discrete multivariate analysis: Theory and practice. Cambridge, MA: The MIT Press.Google Scholar
  7. Böhning, D., Vidal-Diez, A., Lerdsuwansri, R., Viwatwongkasem, C., & Arnold, M. (2013). A generalization of Chao’s estimator for covariate information. Biometrics, 69(4), 1033–1042.CrossRefGoogle Scholar
  8. Brent, B. (2007). A repeated observation approach for estimating the street homeless population. Evaluation Review, 31(2), 166–199.CrossRefGoogle Scholar
  9. Burnham, K. P., & Anderson, D. R. (2002). Model selection and multimodel inference: A practical information-theoretic approach (2nd ed., Vol. XXVI). New York: Springer.Google Scholar
  10. Busch-Geertsema, V. (2013). Housing first Europe: Final report. Brussels: Feantsa.Google Scholar
  11. Chao, A., Tsay, P. K., Lin, S.-H., Shau, W.-Y., & Chao, D.-Y. (2001). The applications of capture-recapture models to epidemiological data. Statistics in Medicine, 20, 3123–3157.CrossRefGoogle Scholar
  12. Collins, D. (2010). Homelessness in Canada and New Zealand: A comparative perspective on numbers and policy responses. Urban Geography, 31(7), 932–952.CrossRefGoogle Scholar
  13. Cormack, R. (1989). Log-linear models for capture-recapture. Biometrics, 45(2), 395–413.CrossRefGoogle Scholar
  14. Coumans, M., & Schmeets, H. (2014). The socially excluded in the Netherlands: The development of an overall index. Social Indicators Research. doi: 10.1007/s11205-014-0707-6.Google Scholar
  15. Coumans, A. M., & Spreen, M. (2003). Drug use and the role of homelessness in the process of marginalization. Substance Use and Misuse, 38(3–6), 311–338.CrossRefGoogle Scholar
  16. Cousineau, M. R., & Ward, T. W. (1992). An evaluation of the S-night street enumeration of the homeless in Los Angeles. Evaluation Review, 16(4), 389–399.CrossRefGoogle Scholar
  17. Cowan, C. D., Breakey, W. R., & Fischer, P. J. (1986). The methodology of counting the homeless. In Proceedings of the American statistical association (pp. 170–175).Google Scholar
  18. De Bruin, D., Meijerman, C., Verbraeck, H., Braam, R., Leenders, F. & Van de Wijngaart, G. (2003). Zwerven in de 21ste eeuw: een exploratief onderzoek naar geestelijke gezondheidsproblematiek en overlast van dak-en thuislozen in Nederland. [Dwelling in the 21st century: An explorative study for mental illness among and nuisance from roof- and homeless people in the Netherlands]. Utrecht: CVO, Centre for Drug Research.Google Scholar
  19. Devine, J. A., & Wright, J. D. (1992). Counting the homeless—S-night in New Orleans. Evaluation Review, 16(4), 409–417.CrossRefGoogle Scholar
  20. D’Onise, K., Wang, Y., & McDermott, R. (2007). The importance of numbers: Using capture-recapture to make the homeless count in Adelaide. Australian Journal of Primary Health, 13(1), 89–96.Google Scholar
  21. Edgar, B. (2009). European review of statistics on homelessness. European housing research Ltd. Brussels: European Federation of National Organisations Working with the Homeless.Google Scholar
  22. Edin, K. (1992). Counting Chicago homeless—An assesment of the census bureaus street and shelter night. Evaluation Review, 16(4), 365–375.CrossRefGoogle Scholar
  23. Félix-Medina, M. H., & Thompson, S. K. (2004). Combining link-tracing sampling and cluster sampling to estimate the size of hidden populations. Journal of Official Statistics, 20(1), 19–38.Google Scholar
  24. Fienberg, S. E. (1972). The multiple recapture census for closed populations and incomplete 2k contingency tables. Biometrika, 59(3), 591–603.Google Scholar
  25. Fisher, N., Turner, S. W., Pugh, R., & Taylor, C. (1994). Estimating numbers of homeless mentally ill people in north east Westminster by using capture-recapture analysis. Britisch Medical Journal, 308, 27–30.CrossRefGoogle Scholar
  26. Fitzpatrick, S., Pawson, H., Bramley, G., Wilcox, S., & Watts, B. (2012). The homelessness monitor: England 2012. London: Institute for Housing, Urban and Real Estate Research, Heriot-Watt University and Centre for Housing Policy, University of York.Google Scholar
  27. Hastie, T. J., & Pregibon, D. (1992). Generalized linear models, Chapter 6. In J. M. Chambers & T. J. Hastie (Eds.), Statistical models in S. Edmonton, AM: Wadsworth & Brooks/Cole.Google Scholar
  28. Heydendael, P. H. J. M. (2000). Naar huis. Over territoria van mensen die niet in de pas lopen. [Going home. About territoria of people who fall out of line]. Nijmegen: UMC St. Radboud.Google Scholar
  29. Heydendael, P. H. J. M., & Brouwers, H. G. (1989). Mensen in de marge in soorten en maten. [People on the fringes in all kinds and measures]. Tijdschrift voor Sociale Gezondheidszorg, 8, 4–8.Google Scholar
  30. Heydendael, P. H. J. M., & Brouwers, H. G. (1990). PLOTT: Prognostisch landelijk onderzoek thuislozen en thuislozenzorg: de opbouw van het mentaal systeem. [Prognostic National Study of Homelessness: The construction of the mental system]. Nijmegen: UMC St. Radboud.Google Scholar
  31. Hombs, M. E. (2011). Modern homelessness: A reference handbook. Santa Barbara: ABC-CLIO.Google Scholar
  32. Hopper, K. (1992). Counting the homeless—S-night in New York. Evaluation Review, 16(4), 376–388.CrossRefGoogle Scholar
  33. Hopper, K., Shinn, M., Laska, E., Meisner, M., & Wanderling, J. (2008). Estimating numbers of unsheltered homeless people through plant-capture and postcount survey methods. American Journal of Public Health, 98(8), 1438.CrossRefGoogle Scholar
  34. Hudson, C. G., & Vissing, Y. M. (2010). The geography of adult homelessness in the US: Validation of state and county estimates. Health & Place, 16(5), 828–837.CrossRefGoogle Scholar
  35. Hulchanski, J. D. (2000). A new Canadian Pastime? Counting homeless people. Toronto: University of Toronto.Google Scholar
  36. Hulschbosch, L., Nicholas, S., Smit, F., & Wolf, J. (2003). Dakloos in Alkmaar: onderzoek naar omvang en kenmerken van de daklozenpopulatie. [Homeless in Alkmaar: Study to estimate the size and characteristics of the homeless population]. Utrecht: Trimbos-Institute.Google Scholar
  37. Hulschbosch, L., Nicholas, S., & Wolf, J. (2005). Dakloos in Leiden. Onderzoek naar omvang en kenmerken van de daklozenpopulatie. [Homeless in Leiden. Study of size and characteristics of the homeless population]. Utrecht: Trimbos-Institute.Google Scholar
  38. Hulschbosch, L., Nicholas, S., & Wolf, J. (2006). Omvang van de daklozenpopulatie in de stad Utrecht. Resultaten van een omvangschatting in het voorjaar van 2005. [Size of the homeless population in the city of Utrecht. Results of a size estimation in the spring of 2005]. Utrecht: Trimbos-Institute.Google Scholar
  39. International Working Group For Disease Monitoring and Forecasting, IWGDMF. (1995). Capture-recapture and multiple record systems estimation. Part I. History and theoretical development. American Journal of Epidemiology, 142(10), 1059–1068.Google Scholar
  40. Koegel, P., Burnam, M. A., & Morton, S. C. (1996). Enumerating homeless people alternative strategies and their consequences. Evaluation Review, 20(4), 378–403.CrossRefGoogle Scholar
  41. Kriegler, B., & Berk, R. (2007). Small area estimation of the homeless in Los Angeles: An application. Los Angeles: UCLA, department of statistics.Google Scholar
  42. Kriegler, B., & Berk, R. (2010). Small area estimation of the homeless in Los Angeles: An application of cost-sensitive stochastic gradient boosting. Annals of Applied Statistics, 4(3), 1234–1255.CrossRefGoogle Scholar
  43. Link, B., Phelan, J., Bresnahan, M., Stueve, A., Moore, R., & Susser, E. (1995). Lifetime and 5-year prevalence of homelessness in the United States—New evidence on an old debate. American Journal of Orthopsychiatry, 65(3), 347–354.CrossRefGoogle Scholar
  44. Link, B. G., Susser, E., Stueve, A., Phelan, J., Moore, R. E., & Struening, E. (1994). Lifetime and five-year prevalence of homelessness in the United States. American Journal of Public Health, 84(12), 1907–1912.CrossRefGoogle Scholar
  45. Maas, M., Al Shamma, S., Altena, A., Jansen, N., & Wolf, J. (2012). Discussie Amsterdam: Housing First. Evaluatie van de werkzaamheid. [Discussion Amsterdam: Housing first. Evaluation of its effectiveness]. Nijmegen: Onderzoekscentrum maatschappelijke zorg, UMC St Radboud Nijmegen.Google Scholar
  46. Maas, M., & Planije, M. (2009). Monitor Plan van Aanpak Maatschappelijke Opvang. Rapportage 2009: Amsterdam, Den Haag, Rotterdam en Utrecht. [The Homelessness Action Plan. Report 2009: Amsterdam, The Hague, Rotterdam and Utrecht]. Utrecht: Trimbos Institute.Google Scholar
  47. Metraux, S., Culhane, D., Raphael, S., White, M., Pearson, C., Hirsch, E., et al. (2001). Assessing homeless population size through the use of emergency and transitional shelter services in 1998: Results from the analysis of administrative data from nine US jurisdictions. Public Health Reports, 116(4), 344.CrossRefGoogle Scholar
  48. Patterson, M., Moniruzzaman, A., Palepu, A., Zabkiewicz, D., Frankish, C. J., Krausz, M., & Somers, J. M. (2013). Housing First improves subjective quality of life among homeless adults with mental illness: 12-month findings from a randomized controlled trial in Vancouver, British Columbia. Social Psychiatry and Psychiatric Epidemiology, 48(8), 1245–1259.CrossRefGoogle Scholar
  49. Pointing, B., Babacan, H., & Clough, A. (2013). Homelessness in Douglas: It’s much more than not having a roof over your head. Cairns, Queensland: James Cook University.Google Scholar
  50. Reinking, D., Nicholas, S., Van Leiden, L., Van Bakel, H., Zwikker, M., & Wolf, J. (2001). Daklozen in Den Haag: onderzoek naar omvang en kenmerken van de daklozenpopulatie. [Homeless in The Hague: Study for size and characteristics of the homeless population. Utrecht: Trimbos-Institute.Google Scholar
  51. Ringwalt, C. L., Greene, J. M., Robertson, M., & McPheeters, M. (1998). The prevalence of homelessness among adolescents in the United States. American Journal of Public Health, 88(9), 1325–1329.CrossRefGoogle Scholar
  52. Salo, M. T., & Campanelli, P. C. (1991). Ethnographic methods in the development of census procedures for enumerating the homeless. Urban Anthropology, 20(2), 127–140.Google Scholar
  53. Schmeets, H., & Coumans, M. (2013). The assessment of social cohesion and social exclusion in the Netherlands. Paper prepared for the UNESCO workshop on measuring and assessing inclusive social policies. Paris: UNESCO.Google Scholar
  54. Schmeets, H., & Te Riele, S. (2014). Declining social cohesion in The Netherlands? Social Indicators Research, 115(2), 791–812.CrossRefGoogle Scholar
  55. Shaw, I., Bloor, M., Cormack, R., & Williamson, H. (1996). Estimating the prevalence of hard-to-reach populations: The illustration of mark-recapture methods in the study of homelessness. Social Policy & Administration, 30(1), 69–85.CrossRefGoogle Scholar
  56. Spreen, M. (1992). Rare populations, hidden populations, and link-tracing designs: What and why? Bulletin de Méthodologie Sociologique, 36(1), 34–58.CrossRefGoogle Scholar
  57. Spreen, M. (1999). Sampling personal network structures: Statistical inference in ego-graphs. Ph.D. Thesis, University of Groningen.Google Scholar
  58. Spreen, M., & Coumans, A. M. (2001). A note on network sampling in drug abuse research. Connections: Official Journal of the International Network for Social Network Analysis, 24(3), 44–51.Google Scholar
  59. Stark, L. R. (1992). Counting the homeless—An assessment of S-night in Phoenix. Evaluation Review, 16(4), 400–408.CrossRefGoogle Scholar
  60. Thompson, S. K., & Frank, O. (2000). Model-based estimation with link-tracing sampling designs. Survey Methodology, 26(1), 87–98.Google Scholar
  61. Tompsett, C. J., Toro, P. A., Guzicki, M., Manrique, M., & Zatakia, J. (2006). Homelessness in the United States: Assessing changes in prevalence and public opinion, 1993–2001. American Journal of Community Psychology, 37(1–2), 47–61.Google Scholar
  62. Toro, P. A., Tompsett, C. J., Lombardo, S., Philippot, P., Nachtergael, H., Galand, B., et al. (2007). Homelessness in Europe and the United States: A comparison of prevalence and public opinion. Journal of Social Issues, 63(3), 505–524.CrossRefGoogle Scholar
  63. Van der Heijden, P. G. M., Whittaker, J., Cruyff, M., Bakker, B., & Van der Vliet, R. (2012). People born in the Middle East but residing in the Netherlands: Invariant population size estimates and the role of active and passive covariates. Annals of Applied Statistics, 6(3), 831–852.CrossRefGoogle Scholar
  64. Van der Heijden, P. G. M., Zwane, E., & Hessen, D. (2009). Structurally missing data problems in multiple list capture-recapture data. Advances in Statistical Analysis, 93(1), 5–21.CrossRefGoogle Scholar
  65. Van der Zwet, G. P., Van der Meijden, R. R., & Burgers, L. (1990). Dak-en thuislozen. Aantallen, opvang en gemeentelijk beleid; een inventariserend onderzoek. [Roof-and homeless people. Numbers, shelter and municipally policy]. The Hague: Vereniging voor Nederlandse Gemeenten (VNG; Council for Dutch Municipalities), afdeling Sociaal-Geografisch en Bestuurskundig Onderzoek (SGBO; department of Social-Geographic and Science of Public Administration).Google Scholar
  66. Van Zwieten, M., Biesma, S., & Bieleman, B. (2008). Monitor daklozen en harddrugsverslaafden Apeldoorn 2008. Metingen 2004–2007. [Monitor homeless and hard drug users Apeldoorn 2008. Measurements 2004–2007]. Groningen/Rotterdam: Intraval.Google Scholar
  67. Venables, W. N., & Ripley, B. D. (2002). Modern applied statistics with S (4th ed.). New York: Springer.CrossRefGoogle Scholar
  68. Vocks, J., Mensink, C., & Wolf, J. (2008). Omvang van de daklozenpopulatie in de regio Waterland. Resultaten van een omvangschatting in 2008. [Size of the homeless population in the region of Waterland. Results of a size estimation in 2008]. Nijmegen: UMC St. Radboud.Google Scholar
  69. Williams, J. C. (2011). “Stand up and be counted”: The politics of a homeless enumeration. Poverty & Public Policy, 3(3), 1–27.CrossRefGoogle Scholar
  70. Williams, M., & Cheal, B. (2002). Can we measure homelessness? A critical evaluation of the method of ‘capture-recapture’. Social Research Methodology, 5(4), 313–331.CrossRefGoogle Scholar
  71. Wolf, J., Zwikker, M., Nicholas, H., Van Bakel, H., Reinking, D., & Van Leiden, I. (2002). Op achterstand. Een onderzoek naar mensen in de marge van Den Haag. [About deprivation. A study into marginal people in The Hague]. Utrecht: Trimbos Institute.Google Scholar
  72. Wood, G., Batterham, D., Cigdem, M., & Mallett, S. (2014). The spatial dynamics of homelessness in Australia 2001–2011, AHURI Final Report No. 227. Melbourne: Australian Housing and Urban Research Institute. http://www.ahuri.edu.au/publications/projects/p53027.
  73. Wright, J. D., & Devine, J. A. (1992). Counting the homeless—the Census Bureaus S-night in 5 United States Cities. Evaluation Review, 16(4), 355–364.CrossRefGoogle Scholar
  74. Zwane, E. N., Van der Pal-De Bruin, K., & Van der Heijden, P. G. M. (2004). The multiple record systems estimator when registrations refer to different but overlapping populations. Statistics in Medicine, 23(14), 2267–2281.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • A. M. Coumans
    • 1
  • M. Cruyff
    • 2
  • P. G. M. Van der Heijden
    • 2
    • 3
  • J. Wolf
    • 4
  • H. Schmeets
    • 1
    • 5
  1. 1.Department of Social-Economic and Spatial StatisticsStatistics NetherlandsHeerlenThe Netherlands
  2. 2.Department of Methodology and Statistics, Faculty of Behavioural and Social SciencesUtrecht UniversityUtrechtThe Netherlands
  3. 3.Southampton Statistical Sciences Research UnitUniversity of SouthamptonSouthamptonUK
  4. 4.Onderzoekscentrum Maatschappelijke Zorg (Omz), Public Health, UMC St RadboudRadboud University NijmegenNijmegenThe Netherlands
  5. 5.Maastricht UniversityMaastrichtThe Netherlands

Personalised recommendations