Social Indicators Research

, Volume 115, Issue 2, pp 751–765 | Cite as

A Deprivation Analysis for Andalusia (Spain): An Approach Based on Structural Equations

  • M. L. Rodero-CosanoEmail author
  • C. R. Garcia-Alonso
  • J. A. Salinas-Pérez


The study of deprivation, as a social indicator, is basic in the design and development of public policies because it allows decision makers to identify and analyse needy areas in order to improve their citizens’ well-being. The methodological approach proposed for the development of a new deprivation index is based on the Causal Theory whose conceptual model is analysed using Structural Equations. The domains selected for the deprivation index are: education, employment, income, housing, infrastructures and health. A structural equation model based on variance is the exploratory method used to obtain the indices pertaining to the above mentioned areas; the results obtained are seen to be quite reliable. There is a positive connection between the areas of education, employment and income while the relations between infrastructures and health are found to be negative. The results can be projected at a local level and show basic territorial deficiencies. The spatial units studied are the Andalusian (south of Spain) municipalities (770). The spatial projection of the indices obtained for the domains of deprivation highlights the existence of geographical areas which could be a potential target for public action.


Structural equation models Partial least squares Spatial base indices Deprivation index Multidimensional poverty Causality 


  1. Anderson, T. W. (1984). An introduction to multivariate statistical analysis. New York: John Wiley & Sons.Google Scholar
  2. Bagozzi, R. P., & Phillips, L. W. (1982). Representing and testing organizational theories: A holistic construal. Administrative Science Quarterly, 27(3), 459–489.CrossRefGoogle Scholar
  3. Barclay, D., Higgins, C., & Thompson, R. (1995). The partial least squares (PLS) approach to causal modelling: Personal computer adoption and use as an illustration. Technology Studies, Special Issue on Research Methodology, 2(2), 285–309.Google Scholar
  4. Barro, Robert J. (1998). Determinants of economic growth: A cross-country empirical study. Massachusetts: MIT Press Books.Google Scholar
  5. Barroso, C., Carrión, G. C., & Roldán, J. L. (2010). Applying maximum likelihood and PLS on different sample sizes: studies on SERVQUAL model and employee behavior model. In J. Henseler, H. Wang, V. E. Vinci, & W. W. Chin (Eds.), Handbook of partial least squares (pp. 427–447). Berlín: Springer.CrossRefGoogle Scholar
  6. Batista, J.M., & Coenders, G. (2000). Modelos de Ecuaciones Estructurales. Cuadernos de Estadística 6. Madrid: La Muralla SA.Google Scholar
  7. Bollen, K. A., & Noble, M. D. (2011). Colloquium paper: Structural equation models and the quantification of behaviour. Proceedings of the National Academy of Sciences, 108(Supplement 3), 15639–15646.CrossRefGoogle Scholar
  8. Carmines, E. G., & Zeller, R. A. (1979). Reliability and validity assessment. In Sage University Paper (Ed.), Series on quantitative applications in the social sciences (pp. 07–017). Beverly Hills, CA: Sage.Google Scholar
  9. Carstairs, V., & Morris, R. (1991). Deprivation and health in Scotland. Aberdeen: Aberdeen University Press.Google Scholar
  10. Cepeda, G., & Roldan, J. L. (2004). Aplicando en la práctica la técnica PLS en la administración de empresas. Murcia, Spain: XIV Congreso de la Asociación Científica de Economía y Dirección de Empresa.Google Scholar
  11. Chin, W. W. (1998a). The partial least squares approach to structural equation modelling. In G. A. Marcoulides (Ed.), Modern methods for business research (pp. 295–336). Mahwah, NJ: Lawrence Erlbaum Associates, Publisher.Google Scholar
  12. Chin, W. W. (1998b). Issues and opinion on structural equation modelling. MIS Quarterly, 22(1), 7–106.Google Scholar
  13. Chin, W. W. (2010). How to write up and report PLS analyses. In V. E. Vinzi, W. W. Chin, J. Henseler, & H. Wang (Eds.), Handbook of partial least squares: concepts methods and applications (pp. 655–690). Berlin: Springer.CrossRefGoogle Scholar
  14. Communities and local government. UK. (2000). Indices of Deprivation 2000. Resource document. Communities and local government. UK. Accessed November, 25 2010.
  15. Darwiche, A. (2009). Modeling and reasoning with bayesian networks. New York: Cambridge University Press.CrossRefGoogle Scholar
  16. European Commission. Methodologies and Workingpapers. Eurostat. (2009). Income poverty and material deprivation in European countries. European Commission. Accessed May10, 2011.
  17. Fisher, R. J., & Grégoire, Y. (2006). Gender differences in decision satisfaction within established dyads: effects of competitive and cooperative behaviours. Psychology and Marketing, 23(4), 313–333.CrossRefGoogle Scholar
  18. Fornell, C. (1982). A second generation of multivariate analysis: An overview. In C. Fornell (Ed.), A second generation of multivariate analysis 1 pp (pp. 1–21). New York: Praeger Publishers.Google Scholar
  19. Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18, 39–50.CrossRefGoogle Scholar
  20. García Alonso, C. R., Salvador, Carulla L., Negrín Hernández, M. A., & Moreno, Küstner B. (2010). Development of a new spatial analysis tool in mental health: Identification of highly auto correlated areas (hot-spots) of schizophrenia using a multi objective evolutionary algorithm model (MOEA/HS). Epidemiol Psichiatr Soc, 19(4), 302–313.Google Scholar
  21. Gibert, K., García-Alonso, C. R., & Salvador-Carulla, L. (2010). Integrating clinicians, knowledge and data: Expert-based cooperative analysis in healthcare decision support. Health Research Policy System, 8, 28.CrossRefGoogle Scholar
  22. Gil Izquierdo, M., & Ortiz Serrano, S. (2009). Determinantes de la pobreza en España desde una doble perspectiva: monetaria y de privación. Estudios de Economía Aplicada, 27, número 002, 417–436.Google Scholar
  23. Hair, J. F., Anderson, R. E., & Tathan, R. L. (1992). Multivariate data analysis with readings. New York: MacMillan.Google Scholar
  24. Instituto de Estadística y Cartografía de Andalucía (IECA) (2007). “Censo de población, vivienda y hogares 2001”. Sistema de información multi territorial de andalucía (SIMA). Accessed January 15, 2011.
  25. Instituto Nacional de Estadística (INE) (2007): “Censo de población, viviendas y hogares 2001”, 01/07/2007. Accessed January 15, 2011.
  26. Instituto Nacional de Estadística (INE) (2012a): “Encuesta de Condiciones de Vida (ECV) 2012” Accessed October 25, 2012.
  27. Instituto Nacional de Estadística (INE) (2012b): “Encuesta de Población Activa (EPA) 4 Trimestre de 2011” Accessed March 1, 2012.
  28. Jarman, B. (1983). Identification of underprivileged areas. British Medical Journal, 286, 1705–1709.CrossRefGoogle Scholar
  29. Jurado, A., & Pérez-Mayo, J. (2011). Construction and evolution of a multidimensional well-being index for the Spanish regions. Social Indicators Research. doi: 10.1007/s11205-011-9835-4.
  30. Lertxundi, A., Saurina, C., Saez, M., & Ocaña, R. (2005). Construcción de un índice de privación material para los municipios de la región sanitaria Girona. Estudios de Economía Aplicada, 23, número 001, 331–353.Google Scholar
  31. Lewis, B. R., Templeton, G. F., & Byrd, T. A. (2005). A methodology for construct development in MIS research. European Journal of Information Systems, 14(4), 388–400.CrossRefGoogle Scholar
  32. Michalos, A. C. (1997). Sustainability and human well being: Exploring the connections. Social Indicators Research, 40(1–2), 221–258.CrossRefGoogle Scholar
  33. Moreno, B., García-Alonso, C. R., Negrín Hernández, M., Torres-González, F., & Salvador-Carulla, L. (2008). Spatial analysis to identify hotspots of prevalence of schizophrenia. Social Psychiatry and Psychiatric Epidemiology, 43(10), 782–791.CrossRefGoogle Scholar
  34. Nunnally, J. C. (1978). Psychometric theory (2nd ed.). New York: McGraw-Hill.Google Scholar
  35. Osberg, L. & Sharpe, A. (2009). New estimates of the index of economic well-being for selected OECD countries, 1980-2007. Centre for the Study of Living Standards (CSLS), Research Report 2009–11.Google Scholar
  36. Pearl, J. (2009). Causality. Models, reasoning, and inference (2nd Ed ed.). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  37. Prieto-Lara, E., & Ocaña-Riola, R. (2010). Updating rurality index for small areas in Spain. Social Indicators Research, 95, 267–280.CrossRefGoogle Scholar
  38. Ray, D. (1998). Development economics. Princeton, N.J.: Princeton University Press.Google Scholar
  39. Reinartz, W., Haenlein, M., & Henseler, J. (2009). An empirical comparison of the efficacy of covariance-based and variance-based SEM. International Journal of Research in Marketing, 26(4), 332–344.CrossRefGoogle Scholar
  40. Rodríguez-Entrena, M. & Salazar-Ordóñez, M. (2012) Influence of scientific-technical literacy on consumers’ behavioural intentions regarding new food. Appetite,
  41. Sánchez Cantalejo, C., Ocaña Riola, R., & Fernández Ajuria, A. (2008). Deprivation index for small areas in Spain. Social Indicators Research, 89, 259–273.CrossRefGoogle Scholar
  42. Sánchez-Franco, M. J., & Roldán, J. L. (2005). Web acceptance and usage model. A comparison between goal-directed and experiential web users. Internet Research, 15, 21–48.Google Scholar
  43. Scottish Government (2009). Scottish indices of multiple deprivations (SIMD) General Report. Edinburgh. The Scottish Government. Accessed November 21, 2010.
  44. Sen, A. (1999). Development as Freedom. Oxford: Oxford University Press.Google Scholar
  45. Sen A. & Harlem G. (1999) Breaking the Poverty Cycle: Investing in early childhood. Resource document. Inter-American Development Bank. Accessed November 7, 2012.
  46. Social Disadvantage Research Centre (SDRC). (2003). Scottish indices of deprivation 2003. Oxford: SDRC.Google Scholar
  47. Stewart, K. (2005). Dimensions of well-being in EU regions: Do GDP and unemployment tell us all we need to know?. Social Indicators Research, 73, 221–246.CrossRefGoogle Scholar
  48. Stiglitz, J., Sen, A. K., & Fitoussi, J. P. (2009). Report of the Comission on the measurement of economic performance and social progress. Accessed June 15, 2011.
  49. Straub, D., Boudreau, M. C., & Gefen, D. (2004). Validation guidelines for IS positivist research. Communications of the AIS, 13, 380–427.Google Scholar
  50. Tenenhaus, M., & Vinzi, V. E. (2005). PLS regression, PLS path modelling and generalized Procrustean analysis: a combined approach for multi block analysis. Journal of Chemometrics, 19, 145–153.CrossRefGoogle Scholar
  51. Townsend, P. (1987). Deprivation. Journal of Social Policy, 16(2), 125–146.CrossRefGoogle Scholar
  52. Townsend, P., Phillimore, P., & Beattie, A. (1988). Health and deprivation. Inequality and the North. London: Routledge.Google Scholar
  53. Urbach, N., & Ahlemann, F. (2010). Structural equation modelling in information systems research using partial least squares. Journal of Information Technology Theory and Application, 11(2), 5–40.Google Scholar
  54. Werts, C. E., Linn, R. L., & Jöreskog, K. G. (1974). Inter class reliability estimates. Testing structural assumptions. Educational and Psychological Measurement, 34, 25–33.CrossRefGoogle Scholar
  55. Wold, H. (1979). Model construction and evaluation when theoretical knowledge is scarce. Genève: Cahiers du Département D′Économétrie, Faculté des Sciences Économiques et Sociales, Université de Genève An Example of the Use of Partial Least Squares.Google Scholar
  56. Wold, H. (1982). Systems under indirect observation using PLS. In C. Fornell (Ed.), A second generation of multivariate analysis, pp.1 (pp. 325–347). New York: Praeger Publishers.Google Scholar
  57. Wold, H. (1985). Systems analysis by partial least squares. In P. Nijkamp, H. Leitner, & N. Wrigley (Eds.), Measuring the unmeasurable (pp. 221–251). Dordrecht: Martinus Nijhoff Publishers.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • M. L. Rodero-Cosano
    • 1
    Email author
  • C. R. Garcia-Alonso
    • 1
  • J. A. Salinas-Pérez
    • 1
  1. 1.Department of Management and Quantitative MethodsUniversidad Loyola Andalucía (Spain)CórdobaSpain

Personalised recommendations