Social Indicators Research

, Volume 97, Issue 2, pp 123–142 | Cite as

Multiple-Indicator Multilevel Growth Model: A Solution to Multiple Methodological Challenges in Longitudinal Studies

  • Amery D. Wu
  • Yan Liu
  • Anne M. Gadermann
  • Bruno D. Zumbo


This paper described the versatility of the multiple-indicator multilevel (MIML) model in helping to resolve four common challenges in studying growth using longitudinal data. These challenges are (1) how to deal with changes in measurement over time and investigate temporal measurement invariance, (2) how to model residual dependence due to the nested nature of longitudinal data, (3) how to model observed trajectories that do not follow well-known functions commonly discussed in the methodology literature (e.g., a linear or quadratic curve), and (4) how to decide which predictors are relatively more important in explaining individuals’ change over time. With an example of psychological well-being from the Wisconsin Longitudinal Study, we illustrated how the four methodological challenges can be resolved using the 3-phase MIML procedures and the Pratt’s importance measures.


Growth and change Quality of life Latent growth modeling Measurement invariance Pratt’s measures Psychological well-being Longitudinal studies 


  1. Bostic, T. J., & Ptacek, J. T. (2001). Personality factors and the short-term variability in subjective well-being. Journal of Happiness Studies, 2, 355–373.CrossRefGoogle Scholar
  2. Brannick, M. T. (1995). Critical comments on applying covariance structure modeling. Journal of Organizational Behavior, 16, 201–213.CrossRefGoogle Scholar
  3. Brown, T. A. (2006). Confirmatory factor analysis for applied research. New York, NY: Guilford Publications, Inc.Google Scholar
  4. Browne, M. W., & Cudeck, R. (1992). Alternative ways of assessing model fit. In K. A. Bollen & J. S. Long (Eds.), Testing structural equation models (pp. 136–162). Newbury Park, CA: Sage.Google Scholar
  5. Chan, D. (1998). The conceptualization and analysis of change over time: An integrative approach incorporating longitudinal mean and covariance structures analysis (LMACS) and multiple indicator latent growth modeling (MLGM). Organizational Research Methods, 1, 421–483.CrossRefGoogle Scholar
  6. Cheung, G. W., & Rensvold, R. B. (2002). Evaluating goodness-of-fit indexes for testing MI. Structural Equation Modeling, 9, 235–255.Google Scholar
  7. Cronbach, L. J. (1990). Essentials of Psychological Testing (5th ed.). New York, NY: Harper Collins Publishers, Inc.Google Scholar
  8. DeNeve, K. M., & Cooper, H. (1998). The happy personality: A meta-analysis of 137 personality traits and subjective well-being. Psychological Bulletin, 124, 197–229.CrossRefGoogle Scholar
  9. Frederick, S., & Loewenstein, G. (1999). Hedonic adaptation. In D. Kahneman, E. Diener, & N. Schwarz (Eds.), Well-being: The foundations of hedonic psychology (pp. 302–329). New York: Russell Sage Foundation.Google Scholar
  10. Goldstein, H. (1995). Multilevel statistical models. London: Edward Arnold.Google Scholar
  11. Golembiewski, R. T., Billingsley, K., & Yeager, S. (1976). Measuring change and persistence in human affairs: Types of change generated by OD design. Journal of Applied Behavioral Science, 12, 133–157.CrossRefGoogle Scholar
  12. Gorsuch, R. L. (1983). Factor analysis (2nd ed.). Hillsdale, NJ: Erlbaum.Google Scholar
  13. Hancock, G. R., & Lawrence, F. R. (2005). Using latent growth models to evaluate longitudinal change. In G. R. Hancock & R. O. Mueller (Eds.), Structural equation modeling: A second course (pp. 171–196). Greenwich, CT: Information Age Publishing, Inc.Google Scholar
  14. Hox, J. (2002). Multilevel analysis techniques and application. Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
  15. Hu, L., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling, 6, 1–55.CrossRefGoogle Scholar
  16. Jöreskog, K. G., & Sörbom, D. (1989). LISERL 7: A guide to the program and applications (2nd ed.). Chicago, IL: SPSS.Google Scholar
  17. Kaplan, D. (2008). An overview of Markov chain methods for the study of stage-sequential developmental processes. Developmental Psychology, 44, 457–467.CrossRefGoogle Scholar
  18. Kelloway, E. K. (1995). Structural equation modeling in perspective. Journal of Organizational Behavior, 16, 215–224.CrossRefGoogle Scholar
  19. Little, T. (1997). Mean and covariance structures (MACS) analyses of cross-cultural data: Practical and theoretical issues. Multivariate Behavioral Research, 32, 53–76.CrossRefGoogle Scholar
  20. Lucas, R. E., Clark, A. E., Georgellis, Y., & Diener, E. (2003). Reexamining adaptation and the set point model of happiness: Reactions to changes in marital status. Journal of Personality and Social Psychology, 84, 527–539.CrossRefGoogle Scholar
  21. Lucas, R. E., Clark, A. E., Georgellis, Y., & Diener, E. (2004). Unemployment alters the set point for life satisfaction. Psychological Science, 15, 8–13.CrossRefGoogle Scholar
  22. Marsh, H. W., Hau, K. T., & Wen, Z. (2004). In search of golden rules: Comment on hypothesis-testing approaches to setting cutoff values for fit indexes and dangers in overgeneralizing Hu and Bentler’s (1999) findings. Structural Equation Modeling, 11, 320–341.CrossRefGoogle Scholar
  23. McCrae, R. R., & John, O. P. (1992). An introduction to the five-factor model and its applications. Journal of Personality, 60, 175–215.CrossRefGoogle Scholar
  24. Meredith, W. (1993). Measurement invariance, factor analysis and factorial invariance. Psychometrika, 58, 525–543.CrossRefGoogle Scholar
  25. Mroczek, D. K., & Spiro, A., I. I. I. (2005). Change in life satisfaction during adulthood: Findings from the veterans affairs normative aging study. Journal of Personality and Social Psychology, 88, 189–202.CrossRefGoogle Scholar
  26. Muthén, L. K., & Muthén, B. O. (1998–2007). Mplus user’s guide (5th ed.). Los Angeles, CA: Muthén & Muthén.Google Scholar
  27. Raudenbush, S. W., & Bryk, A. S. (2002). Hierarchical linear models: Applications and data analysis methods. Thousand Oaks, CA: Sage Publications.Google Scholar
  28. Ryff, C. (1989). Happiness is everything, or is it? Journal of Personality and Social Psychology, 6, 1069–1081.CrossRefGoogle Scholar
  29. Ryff, C. D., & Keyes, D. L. M. (1995). The structure of psychological well-being revisited. Journal of Personality and Social Psychology, 69, 719–727.CrossRefGoogle Scholar
  30. Singer, J. D., & Willett, J. B. (2003). Applied longitudinal data analysis: Modeling change and even occurrence. London: Oxford University Press.Google Scholar
  31. Thomas, D. R., Hughes, E., & Zumbo, B. D. (1998). On variable importance in linear regression. Social Indicators Research, 45, 253–275.CrossRefGoogle Scholar
  32. Vandenberg, R. J., & Lance, C. E. (2000). A review and synthesis of the measurement invariance literature: Suggestions, practices, and recommendations for organizational research. Organizational Research Methods, 3, 4–70.CrossRefGoogle Scholar
  33. Willett, J. B., Singer, J. D., & Martin, N. C. (1998). The design and analysis of longitudinal studies of development and psychopathology in context: Statistical models and methodological recommendations. Development and Psychopathology, 10, 395–426.CrossRefGoogle Scholar
  34. Wisconsin Longitudinal Study Handbook. (2007). Edited by Erica Wollmering with Contributions by Wisconsin Longitudinal Study Staff.Google Scholar
  35. Wu, A. D., Li, Z., & Zumbo, B. D. (2007). Decoding the meaning of factorial invariance and updating the practice of multi-group confirmatory factor analysis: A demonstration with TIMSS data. Practical Assessment, Research and Evaluation, 12, 1–26.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Amery D. Wu
    • 1
  • Yan Liu
    • 1
  • Anne M. Gadermann
    • 1
  • Bruno D. Zumbo
    • 1
  1. 1.Department of ECPSUniversity of British ColumbiaVancouverCanada

Personalised recommendations