Advertisement

Social Indicators Research

, Volume 94, Issue 2, pp 273–296 | Cite as

Sample Heterogeneity and the Measurement Structure of the Multidimensional Students’ Life Satisfaction Scale

  • Richard SawatzkyEmail author
  • Pamela A. Ratner
  • Joy L. Johnson
  • Jacek A. Kopec
  • Bruno D. Zumbo
Article

Abstract

Several measurement assumptions were examined with the goal of assessing the validity of the Multidimensional Students’ Life Satisfaction Scale (MSLSS), a measure of adolescents’ satisfaction with their family, friends, living environment, school, self, and general quality of life. The data were obtained via a cross-sectional survey of 8,225 adolescents in British Columbia, Canada. Confirmatory factor and factor mixture analyses of ordinal data were used to examine the measurement assumptions. The adolescents did not respond to all the MSLSS items in a psychometrically equivalent manner. A correlated five-factor model for an abridged version of the MSLSS resulted in good fit when all negatively worded items and several positively worded items (the least invariant) were excluded. The abridged 18-item version of the MSLSS provides a promising alternative for the measurement of five life domains that are pertinent to adolescents’ quality of life.

Keywords

Quality of life Adolescence Measurement Validity Factor mixture analysis 

Notes

Acknowledgments

This research was completed with support for doctoral research from the Canadian Institutes of Health Research (CIHR), the Michael Smith Foundation for Health Research (MSHFR), and the Canadian Nurses Foundation. Dr. Kopec and Dr. Ratner hold Senior Scholar Awards from the MSFHR and Dr. Johnson holds a CIHR Investigator Award. Funding for the survey research was provided by the CIHR (grant #: 62980).

References

  1. Allison, P. D. (2002). Missing data. Thousand Oaks, CA: Sage.Google Scholar
  2. Bandalos, D. L. (2002). The effects of item parceling on goodness-of-fit and parameter estimate bias in structural equation modeling. Structural Equation Modeling, 9, 78–102.CrossRefGoogle Scholar
  3. Barnette, J. J. (2000). Effects of stem and Likert response option reversals on survey internal consistency: If you feel the need, there is a better alternative to using those negatively worded stems. Educational and Psychological Measurement, 60, 361–370.CrossRefGoogle Scholar
  4. Beauducel, A., & Herzberg, P. Y. (2006). On the performance of maximum likelihood versus means and variance adjusted weighted least squares estimation in CFA. Structural Equation Modeling, 13, 186–203.CrossRefGoogle Scholar
  5. Borgers, N., Hox, J., & Sikkel, D. (2004). Response effects in surveys on children and adolescents: The effect of number of response options, negative wording, and neutral mid-point. Quality & Quantity, 38, 17–33.CrossRefGoogle Scholar
  6. Bradford, R., Rutherford, D. L., & John, A. (2002). Quality of life in young people: Ratings and factor structure of the Quality of Life Profile-Adolescent Version. Journal of Adolescence, 25, 261–274.CrossRefGoogle Scholar
  7. Byrne, B. M. (1998). Structural equation modeling with LISREL, PRELIS, and SIMPLIS: Basic concepts, applications, and programming. Mahwah, NJ: Lawrence Erlbaum.Google Scholar
  8. Campbell, A., Converse, P., & Rodgers, W. L. (1976). The quality of American life. New York: Sage.Google Scholar
  9. Cohen, A. S., & Bolt, D. M. (2005). A mixture model analysis of differential item functioning. Journal of Educational Measurement, 42, 133–148.CrossRefGoogle Scholar
  10. Dannerbeck, A., Casas, F., Sadurni, M., & Coenders, G. (Eds.). (2004). Quality-of-life research on children and adolescents (Vol. 23). Dordrecht: Kluwer.Google Scholar
  11. De Ayala, R. J., Seock, H., Stapleton, L. M., & Dayton, C. M. (2002). Differential item functioning: A mixture distribution conceptualization. International Journal of Testing, 2, 243.CrossRefGoogle Scholar
  12. Drennan, J. (2003). Cognitive interviewing: Verbal data in the design and pretesting of questionnaires. Journal of Advanced Nursing, 42, 57–63.CrossRefGoogle Scholar
  13. Drotar, D. (Ed.). (1998). Measuring health-related quality of life in children and adolescents: Implications for research and practice. Mahwah, NJ: Lawrence Erlbaum.Google Scholar
  14. Edwards, J. R., & Bagozzi, R. P. (2000). On the nature and direction of relationships between constructs and measures. Psychological Methods, 5, 155–174.CrossRefGoogle Scholar
  15. Edwards, T. C., Huebner, C. E., Connell, F. A., & Patrick, D. L. (2002). Adolescent quality of life, part I: Conceptual and measurement model. Journal of Adolescence, 25, 275–286.CrossRefGoogle Scholar
  16. Edwards, T. C., Patrick, D. L., & Topolski, T. D. (2003). Quality of life of adolescents with perceived disabilities. Journal of Pediatric Psychology, 28, 233–241.CrossRefGoogle Scholar
  17. Enders, C. K. (2006). Analyzing structural equation models with missing data. In G. R. Hancock & R. O. Mueller (Eds.), Structural equation modeling: A second course (pp. 313–342). Greenwich: Information Age Publishing.Google Scholar
  18. Fayers, P., & Machin, D. (2007). Quality of life: The assessment, analysis and interpretation of patient-reported outcomes. Chichester, West Sussex: Wiley.Google Scholar
  19. Finney, S. J., & DiStefano, C. (2006). Non-normal and categorical data in structural equation modeling. In G. R. Hancock & R. O. Mueller (Eds.), Structural equation modeling: A second course (pp. 269–314). Greenwich: Information Age Publishing.Google Scholar
  20. Fletcher, R., & Hattie, J. (2005). Gender differences in physical self-concept: A multidimensional differential item functioning analysis. Educational and Psychological Measurement, 65, 657–667.CrossRefGoogle Scholar
  21. Flora, D. B., & Curran, P. J. (2004). An empirical evaluation of alternative methods of estimation for confirmatory factor analysis with ordinal data. Psychological Methods, 9, 466–491.CrossRefGoogle Scholar
  22. Gilman, R. (1999). Validation of the Multidimensional Students’ Life Satisfaction Scale with adolescents. Dissertation Abstracts International, 60(04), 1901B.Google Scholar
  23. Gilman, R., & Ashby, J. S. (2003). A first study of perfectionism and multidimensional life satisfaction among adolescents. Journal of Early Adolescence, 23, 218–235.CrossRefGoogle Scholar
  24. Gilman, R., Huebner, E. S., & Laughlin, J. E. (2000). A first study of the Multidimensional Students’ Life Satisfaction Scale with adolescents. Social Indicators Research, 52, 135–160.CrossRefGoogle Scholar
  25. Greenspoon, P. J., & Saklofske, D. H. (1997). Validity and reliability of the Multidimensional Students’ Life Satisfaction Scale with Canadian children. Journal of Psychoeducational Assessment, 15, 138–155.CrossRefGoogle Scholar
  26. Greenspoon, P. J., & Saklofske, D. H. (1998). Confirmatory factor analysis of the Multidimensional Students’ Life Satisfaction Scale. Personality and Individual Differences, 25, 965–971.CrossRefGoogle Scholar
  27. Hagenaars, J. A., & McCutcheon, A. L. (2002). Applied latent class analysis. Cambridge, NY: Cambridge University Press.Google Scholar
  28. Harter, S. (1999). The construction of the self: A developmental perspective. New York: Guilford.Google Scholar
  29. Hinds, P. S., & Haase, J. (2003). Quality of life in children and adolescents with cancer. In C. R. King & P. S. Hinds (Eds.), Quality of life from nursing and patient perspectives: Theory, research, practice (2nd ed., pp. 143–168). Sudbury, MA: Jones and Bartlett.Google Scholar
  30. Hu, L., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling, 6, 1–55.Google Scholar
  31. Huebner, E. S. (1994). Preliminary development and validation of a multidimensional life satisfaction scale for children. Psychological Assessment, 6, 149–158.CrossRefGoogle Scholar
  32. Huebner, E. S. (1997). Life satisfaction and happiness. In G. Bear, K. Minke, & A. Thomas (Eds.), Children’s needs-II (pp. 271–278). Silver Springs, MD: National Association of School Psychologists.Google Scholar
  33. Huebner, E. S. (2001). Manual for the Multidimensional Students’ Life Satisfaction Scale. Retrieved June 29, 2007, from http://www.cas.sc.edu/psyc/pdfdocs/huebslssmanual.doc.
  34. Huebner, E. S., & Gilman, R. (2002). An introduction to the Multidimensional Students’ Life Satisfaction Scale. Social Indicators Research, 60, 115–122.CrossRefGoogle Scholar
  35. Huebner, E. S., Laughlin, J. E., Ash, C., & Gilman, R. (1998). Further validation of the Multidimensional Students’ Life Satisfaction Scale. Journal of Psychoeducational Assessment, 16, 118–134.CrossRefGoogle Scholar
  36. Huebner, E. S., Nagle, R. J., & Suldo, S. (2003). Quality of life assessment in child and adolescent health care: The Multidimensional Students’ Life Satisfaction Scale (MSLSS). Social Indicators Research Series: Advances in Quality-of-Life Theory and Research, 20, 179–189.Google Scholar
  37. Huebner, E. S., Valois, R. F., Suldo, S. M., Smith, L. C., McKnight, C. G., Seligson, J. L., et al. (2004). Perceived quality of life: A neglected component of adolescent health assessment and intervention. Journal of Adolescent Health, 34, 270–278.Google Scholar
  38. Jöreskog, K. G. (1990). New developments in LISREL: Analysis of ordinal variables using polychoric correlations and weighted least squares. Quality & Quantity, 24, 387.CrossRefGoogle Scholar
  39. Jöreskog, K. G., & Moustaki, I. (2001). Factor analysis of ordinal variables: A comparison of three approaches. Multivariate Behavioral Research, 36, 347–387.CrossRefGoogle Scholar
  40. Kaplan, R. M. (1998). Implication of quality of life assessment in public policy for adolescent health. In D. Drotar (Ed.), Measuring health-related quality of life in children and adolescents (pp. 63–84). Mahwah, NJ: Lawrence Erlbaum.Google Scholar
  41. Koot, H. M., & Wallander, J. L. (2001). Quality of life in child and adolescent illness: Concepts, methods and findings. Hove, East Sussex: Brunner-Routledge.Google Scholar
  42. Lee, S. J., Song, X., Skevington, S., & Hao, Y. T. (2005). Application of structural equation models to quality of life. Structural Equation Modeling, 12, 435–453.CrossRefGoogle Scholar
  43. Little, T. D., Cunningham, W. A., Shahar, G., & Widaman, K. F. (2002). To parcel or not to parcel: Exploring the question, weighing the merits. Structural Equation Modeling, 9, 151–173.CrossRefGoogle Scholar
  44. Lubke, G. H., & Muthén, B. (2005). Investigating population heterogeneity with factor mixture models. Psychological Methods, 10, 21–39.CrossRefGoogle Scholar
  45. Magidson, J., & Vermunt, J. K. (2004). Latent class models. In D. Kaplan (Ed.), The Sage handbook of quantitative methodology for the social sciences (pp. 175–195). Thousand Oaks, CA: Sage.Google Scholar
  46. Marsh, H. W. (1986). Negative item bias in ratings scales for preadolescent children: A cognitive-developmental phenomenon. Developmental Psychology, 22, 37–49.CrossRefGoogle Scholar
  47. Marsh, H. W. (1996). Positive and negative global self-esteem: A substantively meaningful distinction or artifactors? Journal of Personality and Social Psychology, 70, 810–819.CrossRefGoogle Scholar
  48. Marsh, H. W., Hau, K. T., & Wen, Z. (2004). In search of golden rules: Comment on hypothesis-testing approaches to setting cutoff values for fit indexes and dangers in overgeneralizing Hu and Bentler’s (1999) findings. Structural Equation Modeling, 11, 320–341.CrossRefGoogle Scholar
  49. McDonald, R. P., & Ho, M. H. R. (2002). Principles and practice in reporting structural equation analyses. Psychological Methods, 7, 64–82.CrossRefGoogle Scholar
  50. Michalos, A. C. (1985). Multiple discrepancies theory (MDT). Social Indicators Research (Historical Archive), 16, 347–413.CrossRefGoogle Scholar
  51. Millsap, R. E., & Yun-Tein, J. (2004). Assessing factorial invariance in ordered-categorical measures. Multivariate Behavioral Research, 39, 479.CrossRefGoogle Scholar
  52. Moors, G. (2003). Diagnosing response style behavior by means of a latent-class factor approach. Socio-demographic correlates of gender role attitudes and perceptions of ethnic discrimination reexamined. Quality & Quantity, 37, 277–302.CrossRefGoogle Scholar
  53. Muthén, B., & Muthén, L. K. (2006). MPlus (version 4.2). Los Angeles: Statmodel.Google Scholar
  54. Nasser, F. (2003). The effect of using item parcels on ad hoc goodness-of-fit indexes in confirmatory factor analysis: An example using Sarason’s reactions to tests. Applied Measurement in Education, 16, 75–97.CrossRefGoogle Scholar
  55. Nordenfelt, L. (1993). Quality of life, health and happiness. Aldershot: Avebury.Google Scholar
  56. Nunnally, J. C., & Bernstein, I. H. (1994). Psychometric theory (3rd ed.). New York: McGraw-Hill.Google Scholar
  57. Nylund, K. L., Asparouhov, T., & Muthén, B. (2007). Deciding on the number of classes in latent class analysis and growth mixture modeling: A Monte Carlo simulation study. Structural Equation Modeling, 14, 535–569.Google Scholar
  58. Park, N. S. (2000). Life satisfaction of school age children: Cross-cultural and cross-developmental comparisons. Dissertation Abstracts International, 62(02), 1118B.Google Scholar
  59. Park, N. S., Huebner, E. S., Laughlin, J. E., Valois, R. F., & Gilman, R. (2004). A cross-cultural comparison of the dimensions of child and adolescent life satisfaction reports. Social Indicators Research, 66, 61–79.CrossRefGoogle Scholar
  60. Raphael, D. (1996). Determinants of health of North-American adolescents: Evolving definitions, recent findings, and proposed research agenda. Journal of Adolescent Health, 19, 6–16.CrossRefGoogle Scholar
  61. Raphael, D., Brown, I., Rukholm, E., & Hill-Bailey, P. (1996). Adolescent health: Moving from prevention to promotion through a quality of life approach. Canadian Journal of Public Health, 87, 81–83.Google Scholar
  62. Rapley, M. (2003). Quality of life research: A critical introduction. Thousand Oaks, CA: Sage.Google Scholar
  63. Richardson, C. G., Johnson, J. L., Ratner, P. A., Zumbo, B. D., Bottorff, J. L., Shoveller, J. A., et al. (2007). Validation of the dimensions of tobacco dependence scale for adolescents. Addictive Behaviors, 32(7), 1498–1504.CrossRefGoogle Scholar
  64. Rigdon, E. E., & Ferguson, C. E., Jr. (1991). The performance of the polychoric correlation coefficient and selected fitting functions in confirmatory factor analysis with ordinal data. Journal of Marketing Research, 28, 491–497.CrossRefGoogle Scholar
  65. Rosenberg, M. (1989). Society and the adolescent self-image (Rev. ed.). Middletown, CT: Wesleyan University Press.Google Scholar
  66. Samuelsen, K. M. (2008). Examining differential item functioning from a latent mixture perspective. In G. R. Hancock & K. M. Samuelsen (Eds.), Latent variable mixture models (pp. 177–198). Charlotte, NC: Information Age Publishing.Google Scholar
  67. SAS Institute. (2005). Statistical analysis software (version 9.2). Cary, NC: SAS Institute.Google Scholar
  68. Schumacker, R. E., & Lomax, R. G. (2004). A beginner’s guide to structural equation modeling (2nd ed.). Mahwah, NJ: Lawrence Erlbaum.Google Scholar
  69. Spieth, L. E., & Harris, C. V. (1996). Assessment of health-related quality of life in children and adolescents: An integrative review. Journal of Pediatric Psychology, 21, 175–193.CrossRefGoogle Scholar
  70. Steenkamp, J., & Baumgartner, H. (1998). Assessing measurement invariance in cross-national consumer research. Journal of Consumer Research, 25, 78–90.CrossRefGoogle Scholar
  71. Tomas, J. M., & Oliver, A. (1999). Rosenberg’s Self-Esteem Scale: Two factors or method effects. Structural Equation Modeling, 6, 84.CrossRefGoogle Scholar
  72. Topolski, T. D., Edwards, T. C., & Patrick, D. L. (2004). Toward youth self-report of health and quality of life in population monitoring. Ambulatory Pediatrics, 4, 387–394.CrossRefGoogle Scholar
  73. Topolski, T. D., Patrick, D. L., Edwards, T. C., Huebner, C. E., Connell, F. A., & Mount, K. K. (2001). Quality of life and health-risk behaviors among adolescents. Journal of Adolescent Health, 29, 426–435.CrossRefGoogle Scholar
  74. Tu, A. W., Ratner, P. A., & Johnson, J. L. (2008). Gender differences in the correlates of adolescents’ cannabis use. Substance Use and Misuse, 43, 1438–1463.CrossRefGoogle Scholar
  75. Vandenberg, R. J., & Lance, C. E. (2000). A review and synthesis of the measurement invariance literature: Suggestions, practices, and recommendations for organizational research. Organizational Research Methods, 3, 4–69.CrossRefGoogle Scholar
  76. Veenhoven, R. (2000). The four qualities of life. Journal of Happiness Studies, 1, 1–39.CrossRefGoogle Scholar
  77. Viswanathan, M. (2005). Measurement error and research design. Thousand Oaks, CA: Sage.Google Scholar
  78. Wallander, J. L., Schmitt, M., & Koot, H. M. (2001). Quality of life measurement in children and adolescents: Issues, instruments, and applications. Journal of Clinical Psychology, 57, 571–585.CrossRefGoogle Scholar
  79. Yu, C. Y. (2002). Evaluating cutoff criteria of model fit indices for latent variable models with binary and continuous outcomes. Dissertation Abstracts International, 63(10), 3527B.Google Scholar
  80. Zumbo, B. D. (2007a). Validity: Foundational issues and statistical methodology. In C. R. Rao & S. Sinharay (Eds.), Handbook of statistics (Psychometrics) (Vol. 26, pp. 45–79). Amsterdam: Elsevier.Google Scholar
  81. Zumbo, B. D. (2007b). Three generations of DIF analyses: Considering where it has been, where it is now, and where it is going. Language Assessment Quarterly, 4(2), 223–233.Google Scholar
  82. Zumbo, B. D., Gadermann, A. M., & Zeisser, C. (2007). Ordinal versions of coefficients alpha and theta for Likert rating scales. Journal of Modern Applied Statistical Methods, 6, 21–29.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Richard Sawatzky
    • 1
    Email author
  • Pamela A. Ratner
    • 2
  • Joy L. Johnson
    • 2
  • Jacek A. Kopec
    • 3
  • Bruno D. Zumbo
    • 4
  1. 1.Department of NursingTrinity Western UniversityLangleyCanada
  2. 2.School of NursingUniversity of British ColumbiaVancouverCanada
  3. 3.School of Population and Public HealthUniversity of British ColumbiaVancouverCanada
  4. 4.ECPS, Measurement, Evaluation & Research MethodologyUniversity of British ColumbiaVancouverCanada

Personalised recommendations