Advertisement

Soil Mechanics and Foundation Engineering

, Volume 56, Issue 5, pp 314–320 | Cite as

An Assessment of the Osmotic Pressure Effect on the Creep Properties of Silty Mudstone

  • Chong Ma
  • Tao ZhangEmail author
  • Wenmin Yao
SOIL MECHANICS
  • 15 Downloads

The existence of water and osmotic pressure significantly aggravates the rheological behavior of rocks, which greatly affects the long-term stability of rock mass. The triaxial rheological deformation of mudstone under different osmotic pressures was discussed, and a new viscoelastic-plastic rheological constitutive model was proposed. The research shows that the existence of osmotic pressure shortens the time required for the mudstone to reach steady-state creep, reduces the failure-level stress, and makes creep failure occur faster.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Sun, H. Tang, M. Wang, Z. Shan, and X. Hu, "Creep behavior of slip zone soil of the Majiagou landslide in the three gorges area," Environ. Earth Sci., 75(16), 1199 (2016).CrossRefGoogle Scholar
  2. 2.
    M. Pirulli, A. Colombo, and C. Scavia, "From back-analysis to run-out prediction: a case study in the western Italian Alps," Landslides, 8(2), 159-170 (2011).CrossRefGoogle Scholar
  3. 3.
    G. B. Crosta, C. di Prisco, P. Frattini, G. Frigerio, R. Castellanza, and F. Agliardi, "Chasing a complete understanding of the triggering mechanisms of a large rapidly evolving rockslide," Landslides, 11(5), 747-764 (2014).CrossRefGoogle Scholar
  4. 4.
    J. Klimes, J. Yepes, L. Becerril, M. Kusak, I. Galindo, and J. Blahut, "Development and recent activity of the San Andres landslide on el Hierro, Canary Islands, Spain," Geomorphology, 261, 119-131 (2016).CrossRefGoogle Scholar
  5. 5.
    Y. Yan, E. Z. Wang, and S. J. WANG, "Numerical simulation of rheological properties of rocks in seepage field," Chin. J. Rock Soil Mech., 31(6), 1943-1949 (2010).Google Scholar
  6. 6.
    G. Armand, N. Conil, J. Talandier, and D.M. Seyedi, "Fundamental aspects of the hydromechanical behaviour of Callovo-Oxfordian claystone: from experimental studies to model calibration and validation," Comput. Geotech., 85, 277-286 (2017).CrossRefGoogle Scholar
  7. 7.
    X. G. Wang, Y. P. Yin, J. D. Wang, B. Q. Lian, H. J. Qiu, and T.F. Gu, "A nonstationary parameter model for the sandstone creep tests," Landslides, 15(7), 1377-1389 (2018).CrossRefGoogle Scholar
  8. 8.
    S. Horpibulsuk, W. Phojan, A. Suddeepong, A. Chinkulkijniwat, and M.D. Liu, "Strength development in blended cement admixed saline clay," Appl. Clay Sci., 55, 44-52 (2012).CrossRefGoogle Scholar
  9. 9.
    S. L. Shen, Z.F. Wang, J. Yang, and E. C. Ho, "Generalized approach for prediction of jet grout column diameter," Geotech. Geoenviron. Eng., 139(12), 2060-2069 (2013).CrossRefGoogle Scholar
  10. 10.
    C. Ma, H. B. Zhan, T. Zhang, and W. M. Yao, "Investigation on shear behavior of soft interlayers by ring shear tests," Eng. Geol., 254, 34-42 (2019).CrossRefGoogle Scholar
  11. 11.
    S. L. Shen, Z. F. Wang, and W. C. Cheng, "Estimation of lateral displacement induced by jet grouting in clayey soils," Geotechnique, 67(7), 621-630 (2017).CrossRefGoogle Scholar
  12. 12.
    X. G. Wang, B. Hu, H. M. Tang, and H. M. Yu, "Triaxial rheological experiments and the rheological constitutive research on mudstone under hydro-mechanical coupling," Earth Sci. (J. Chin. Univ. Geosciences), 41(5), 886-894 (2016).CrossRefGoogle Scholar
  13. 13.
    T. Zhang, S. Liu, and G. Cai, "Correlations between electrical resistivity and basic engineering property parameters for marine clays in Jiangsu, China," J. Appl. Geophys., 159, 640-648 (2018).CrossRefGoogle Scholar
  14. 14.
    S. Horpibulsuk, R. Rachan, and Y. Raksachon, "Role of fly ash on strength and microstructure development in blended cement stabilized silty clay," Soils Found., 49(1), 85-98 (2009).CrossRefGoogle Scholar
  15. 15.
    X. L. Lai, S. M. Wang, W. M. Ye, and Y. J. Cui, "Experimental investigation on the creep behavior of an unsaturated clay," Can. Geotech. J., 51(6), 621-628 (2014).CrossRefGoogle Scholar
  16. 16.
    G. Cai, T. Zhang, S. Liu, J. Li, and D. Jie, "Stabilization mechanism and effect evaluation of stabilized silt with lignin based on laboratory data," Marine Geores. Geotech., 34(4), 331-340 (2016).CrossRefGoogle Scholar
  17. 17.
    D.P. Lai and R. Liang, "Coupled Creep and Seepage Model for Hybrid Media," J. Eng. Mech., 134(3), 217-223 (2008).CrossRefGoogle Scholar
  18. 18.
    S. Okubo, K. Fukui, and K. Hashiba, "Long-term creep of water-saturated tuff under uniaxial compression," Int. J. Rock Mech. Min. Sci., 47(5), 839-844 (2010).CrossRefGoogle Scholar
  19. 19.
    W. Z. Chen, Z. C. Wang, G. J. Wu, G. J. Wu, J. P. Yang, and B. P. Zhang, "Nonlinear creep damage constitutive model of rock salt and its application to engineering," Chin. J. Rock Mech. Eng., 26(3), 467-472 (2007).Google Scholar
  20. 20.
    J. Yu, H. Li, X. Chen, Y.Y. Cai, N. Wu, and K. Mu, "Triaxial experimental study of associated permeability-deformation of sandstone under hydromechanical coupling," Chin. J. Rock Mech. Eng., 32(6), 1203-1213 (2013).Google Scholar
  21. 21.
    S. L. Huang, X. T. Feng, H. Zhou, and C. Q. Zhang, "Study of aging failure mechanics and triaxial compression creep experiments with water pressure coupled stress of brittle rock," Chin. J. Rock Mech. Eng., 31(11), 3341-3347 (2011).Google Scholar
  22. 22.
    X. G. Wang, B. Hu, H.M. Tang, and X. L. Hu, "A Constitutive model of granite shear creep under moisture," J. Earth Sci., 27(4), 677-685 (2016).CrossRefGoogle Scholar
  23. 23.
    W. Y. Xu, S. Q. Yang, and W. J. Chu, "Nonlinear viscoelasto-plastic rheological model (Hohai model) of rock and its engineering application," Chin. J. Rock Mech. Eng., 25(3), 433-447 (2006).Google Scholar
  24. 24.
    Z. J. Wang, K. L. Yin, W. X. Jian, and C. M. Zhou, "Experiment al study of rheological behaviors of Wanzhou red sand stone in Three Gorges reservoir area," Chin. J. Rock Mech. Eng., 27 (4), 840-847 (2008).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.China University of GeosciencesWuhanChina
  2. 2.Insitute of Geotechnical EngneeringSoutheast UniversityNanjingChina

Personalised recommendations