Advertisement

Optimal dimension reduction for high-dimensional and functional time series

  • Marc HallinEmail author
  • Siegfried Hörmann
  • Marco Lippi
Article
  • 227 Downloads

Abstract

Dimension reduction techniques are at the core of the statistical analysis of high-dimensional and functional observations. Whether the data are vector- or function-valued, principal component techniques, in this context, play a central role. The success of principal components in the dimension reduction problem is explained by the fact that, for any \(K\le p\), the K first coefficients in the expansion of a p-dimensional random vector \(\mathbf{X}\) in terms of its principal components is providing the best linear K-dimensional summary of \(\mathbf X\) in the mean square sense. The same property holds true for a random function and its functional principal component expansion. This optimality feature, however, no longer holds true in a time series context: principal components and functional principal components, when the observations are serially dependent, are losing their optimal dimension reduction property to the so-called dynamic principal components introduced by Brillinger in 1981 in the vector case and, in the functional case, their functional extension proposed by Hörmann, Kidziński and Hallin in 2015.

Keywords

Dimension reduction Time series Principal components Functional principal components Dynamic principal components Karhunen–Loève expansion 

References

  1. Brillinger DR (1981) Time Series: Data Analysis and Theory. Holden-Day, San FranciscozbMATHGoogle Scholar
  2. Forni M, Lippi M (2011) The generalized dynamic factor model: one-sided representation results. J Econom 163:23–28CrossRefzbMATHGoogle Scholar
  3. Forni M, Hallin M, Lippi M, Reichlin L (2000) The generalized dynamic factor model: identification and estimation. Rev Econ Stat 82:540–554CrossRefzbMATHGoogle Scholar
  4. Forni M, Hallin M, Lippi M, Reichlin L (2005) The generalized dynamic factor model: one-sided estimation and forecasting. J Am Stat Assoc 100:830–840MathSciNetCrossRefzbMATHGoogle Scholar
  5. Forni M, Hallin M, Lippi M, Zaffaroni P (2015) Dynamic factor models with infinite-dimensional factor space: one-sided representations. J Econom 185:359–371MathSciNetCrossRefzbMATHGoogle Scholar
  6. Forni M, Hallin M, Lippi M, Zaffaroni P (2017) Dynamic factor models with infinite-dimensional factor space: asymptotic analysis. J Econom 199:74–92MathSciNetCrossRefzbMATHGoogle Scholar
  7. Hallin M, Lippi M (2013) Factor models in high-dimensional time series: a time-domain approach. Stoch Process Appl 123:2678–2695MathSciNetCrossRefzbMATHGoogle Scholar
  8. Hörmann S, Kidziński Ł (2017) freqdom.fda: functional time series: dynamic functional principal components. https://CRAN.R-project.org/package=freqdom.fda
  9. Hörmann S, Kidziński Ł, Hallin M (2015) Dynamic functional principal components. J R Stat Soc B 77:319–348MathSciNetCrossRefGoogle Scholar
  10. Karhunen K (1946) Zur Spektraltheorie Stochastischer Prozesse. Ann Acad Sci Fennicæ Ser. A.I Math Phys 34:1–7MathSciNetzbMATHGoogle Scholar
  11. Karhunen K (1947) Über lineare Methoden in der Wahrscheinlichkeitsrechnung. Ann Acad Sci Fennicæ Ser. A.I Math Phys 37:1–79MathSciNetzbMATHGoogle Scholar
  12. Loève M (1955) Probability theory. Van Nostrand, PrincetonzbMATHGoogle Scholar
  13. Panaretos V, Tavakoli S (2013) Fourier analysis of stationary time series in function space. Ann Stat 41:568–603MathSciNetCrossRefzbMATHGoogle Scholar
  14. Peña D, Yohai VJ (2016) Generalized dynamic principal components. J Am Stat Assoc 11:1121–1131MathSciNetCrossRefGoogle Scholar
  15. Peña D, Smucler E, Yohai VJ (2017) Forecasting multiple time series with one-sided dynamic principal components. arXiv:1708.04705v1

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.ECARESUniversité libre de BruxellesBrusselsBelgium
  2. 2.Département de MathématiqueUniversité libre de BruxellesBrusselsBelgium
  3. 3.Institute for StatisticsGraz University of TechnologyGrazAustria
  4. 4.Einaudi Institute for Economics and FinanceRomeItaly

Personalised recommendations