Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Levi quasivarieties

  • 14 Accesses

This is a preview of subscription content, log in to check access.

References

  1. 1.

    L. C. Kappe, “On Levi-formations,” Arch. Math., 23, 561–572 (1972).

  2. 2.

    F. W. Levi, “Groups in which the commutator operation satisfies certain algebraic conditions,” J. Indian Math. Soc. (N. S.), 6, 87–97 (1942).

  3. 3.

    L. C. Kappe and R. F. Morse, “Levi-properties in metabelian groups,” Contemp. Math., 109, 59–72 (1990).

  4. 4.

    L. C. Kappe and R. F. Morse, “Groups with 3-abelian normal closures,” Arch. Math., 51, 104–110 (1988).

  5. 5.

    R. F. Morse, “Levi-properties generated by varieties,” Contemp. Math., 169, 467–474 (1994).

  6. 6.

    H. Heineken, “Engelsche Elemente der Länge drei,” Illinois J. Math., 5, 681–707 (1961).

  7. 7.

    A. I. Budkin and V. A. Gorbunov, “On the theory of quasivarieties of algebraic systems,” Algebra i Logika, 14, No. 2, 123–142 (1975).

  8. 8.

    A. I. mal'tsev, Algebraic Systems [in Russian], Nauka, Moscow (1970).

  9. 9.

    M. Hall, The Theory of Groups [Russian translation], Izdat. Inostr. Lit., Moscow (1962).

  10. 10.

    H. Neumann, Varieties of Groups [Russian translation], Mir, Moscow (1969).

  11. 11.

    L. C. Kappe and W. P. Kappe, “On three-Engel groups,” Bull. Austral. Math. Soc., 7, 391–405 (1972).

Download references

Additional information

The research was supported by the Russian Foundation for Basic Research (Grant 96-01-00088) and the Grant Center of the State Committee for Higher Education of the Russian Federation at Novosibirsk State University (Grant No. 5).

Barnaul. Translated from Sibirskiî Matematicheskiî Zhurnal, Vol. 40, No. 2, pp. 266–270, March–April, 1999.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Budkin, A.I. Levi quasivarieties. Sib Math J 40, 225–228 (1999). https://doi.org/10.1007/s11202-999-0003-x

Download citation

Keywords

  • Nilpotent Group
  • Normal Closure
  • Arbitrary Integer
  • Nilpotency Class
  • Metabelian Group