Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Linear Orderings of Low Degree

  • 29 Accesses

  • 9 Citations


We consider the class of so-called k-quasidiscrete linear orderings, show that every k-quasi-discrete ordering of low degree has a computable representation, and study estimates for the complexity of all isomorphisms constructed in the article.

This is a preview of subscription content, log in to check access.


  1. 1.

    Jockusch C. G. and Soare R. I., “Degrees of orderings not isomorphic to recursive linear orderings,” Ann. Pure Appl. Logic, 52, 39–61 (1991).

  2. 2.

    Downey R. G. and Jockusch C. G., “Every low Boolean algebra is isomorphic to a recursive one,” Proc. Amer. Math. Soc., 122, No. 3, 871–880 (1994).

  3. 3.

    Downey R. G. and Moses M. F., “On choice sets and strongly nontrivial self-embeddings of recursive linear orderings,” Z. Math. Logik Grundlag. Math., 35, 237–246 (1989).

  4. 4.

    Downey R. G., “Computability theory and linear orderings,” in: ed]Ershov_Yu. L., Goncharov S. S., Nerode A., Remmel J. B. (eds.), Handbook of Recursive Mathematics, Elsevier, Amsterdam, 1998. Ch. 14 (Stud. Logic Found. Math.; V. 139).

  5. 5.

    Frolov A. S., “▵0 2-Copies of linear orderings,” Algebra and Logic, 45, No. 3, 201–209 (2006).

  6. 6.

    Soare R. I., Recursively Enumerable Sets and Degrees, Springer-Verlag, Heidelberg (1987).

  7. 7.

    Rosenstein J. G., Linear Orderings, Academic Press, New York (1982).

Download references

Author information

Correspondence to A. N. Frolov.

Additional information

Original Russian Text Copyright Sc 2010 Frolov A. N.

Translated from Sibirskiĭ Matematicheskiĭ Zhurnal, Vol. 51, No. 5, pp. 1147–1162, September–October, 2010

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Frolov, A.N. Linear Orderings of Low Degree. Sib Math J 51, 913–925 (2010). https://doi.org/10.1007/s11202-010-0091-7

Download citation


  • linear ordering
  • order type
  • computable representation
  • low degree
  • complexity