Siberian Mathematical Journal

, Volume 51, Issue 1, pp 78–87 | Cite as

The Farkas Lemma revisited

Article

Abstract

Boolean valued analysis is applied to deriving operator versions of the classical Farkas Lemma in the theory of simultaneous linear inequalities.

Keywords

Dedekind complete vector lattice linear programming linear inequalities sublinear polyhedral inequalities interval equations alternative theorem Boolean valued model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kjeldsen T. H., “Different motivations and goals in the historical development of the theory of systems of linear inequalities,“ Arch. Hist. Exact Sci., 56, No. 6, 459–538 (2002).CrossRefMathSciNetGoogle Scholar
  2. 2.
    Floudas C. A. and Pardalos P. M. (eds.), Encyclopedia of Optimization, Springer-Verlag, Berlin and New York (2009).MATHGoogle Scholar
  3. 3.
    Kusraev A. G. and Kutateladze S. S., Introduction to Boolean Valued Analysis [in Russian], Nauka, Moscow (2005).Google Scholar
  4. 4.
    Kusraev A. G. and Kutateladze S. S., Subdifferential Calculus: Theory and Applications. [in Russian], Nauka, Moscow (2007).Google Scholar
  5. 5.
    Bartl D., “A short algebraic proof of the Farkas lemma,“ SIAM J. Optim., 19, No. 1, 234–239 (2008).CrossRefMathSciNetGoogle Scholar
  6. 6.
    Kuczma M., An Introduction to the Theory of Functional Equations and Inequalities, Birkhäuser, Basel etc. (2009).MATHGoogle Scholar
  7. 7.
    Downey L., “Farkas’ lemma and multilinear forms,“ Missouri J. Math. Sci., 21, No. 1, 65–67 (2009).MATHMathSciNetGoogle Scholar
  8. 8.
    Aron R., Downey L., and Maestre M., “Zero sets and linear dependence of multilinear forms,“ Note Mat., 25, No. 1, 49–54 (2005/2006).MathSciNetGoogle Scholar
  9. 9.
    Jeyakumar V. and Li G.I., “Farkas’ lemma for separable sublinear functionals,“ Optim. Letters, 3, No. 4, 537–545 (2009).MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Fiedler M. et al., Linear Optimization Problems with Inexact Data, Springer-Verlag, New York (2006).MATHGoogle Scholar
  11. 11.
    Mangasarian O. L., “Set containment characterization,“ J. Global Optim., 24, No. 4, 473–480 (2002).MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Giannessi F., Constrained Optimization and Image Space Analysis. Vol. 1: Separation of Sets and Optimality Conditions, Springer-Verlag, New York (2005).MATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  1. 1.Sobolev Institute of MathematicsNovosibirskRussia

Personalised recommendations