Advertisement

Siberian Mathematical Journal

, 50:1115 | Cite as

A weak invertibility criterion in the weighted L p -spaces of holomorphic functions in the ball

  • F. A. ShamoyanEmail author
Article

Abstract

We obtain a necessary and sufficient condition on a weight function for every nowhere vanishing holomorphic function in the unit ball in the weighted L p -space to be weakly invertible in the corresponding L q -space for all q < p.

Keywords

weak invertibility cyclic elements holomorphic function Bergman space shift operator weighted polynomial approximation 

References

  1. 1.
    Nikol’skiĭ N. K., “Invariant subspaces in operator theory and function theory,” in: Mathematical Analysis. Vol. 12 [in Russian], VINITI, Moscow, 1974, pp. 199–412 (Itogi Nauki i Tekhniki).Google Scholar
  2. 2.
    Nikolskii N. K., Operators, Functions and Systems: An Easy Reading. Vol. 1, Amer. Math. Soc., Providence (2001) (Math. Surveys and Monographs; 92).Google Scholar
  3. 3.
    Havin V. P., “Methods and structure of commutative harmonic analysis,” in: Contemporary Problems of Mathematics. Fundamental Trends [in Russian], VINITI, Moscow, 1987, 15, pp. 12–131 (Itogi Nauki i Tekhniki).Google Scholar
  4. 4.
    Keldysh M. V., “Sur l’appraximation en moyenne par polynomes des functions d’une variable complexe,” Mat. Sb., 16, No. 1, 1–20 (1945).Google Scholar
  5. 5.
    Mergelyan S. N., “Weighted approximation by polynomials,” Uspekhi Mat. Nauk, 9, No. 5, 107–152 (1956).MathSciNetGoogle Scholar
  6. 6.
    Beurling A., “A critical topology in harmonic analysis on semigroups,” Acta Math., 112, No. 3–4, 215–228 (1964).zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Nikol’skiĭ N. K., “Selected problems of weighted approximation and spectral analysis,” Trudy Mat. Inst. Steklov., 120, 3–270 (1974).Google Scholar
  8. 8.
    Shapiro H. S., “Weakly invertible elements in certain function spaces, and generators in l 1,” Michigan Math. J., 11, No. 2, 161–165 (1964).zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Hedberg L. I., “Weighted mean approximation in Carathéodory regions,” Math. Scand., 23, No. 1, 113–122 (1968).zbMATHMathSciNetGoogle Scholar
  10. 10.
    Shamoyan F. A., “Weak invertibility in some spaces of analytic functions,” Akad. Nauk Armenii Dokl., 74, No. 4, 157–160 (1982).zbMATHMathSciNetGoogle Scholar
  11. 11.
    Shamoyan F. A., “Weak invertibility in weighted spaces of analytic functions,” Izv. Math., 60, No. 5, 1061–1082 (1996).zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Shamoyan F. A., “Weakly invertible elements in weighted anisotropic spaces of holomorphic functions in a polydisk,” Sb.: Math., 193, No. 6, 925–943 (2002).zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Shamoyan F. A., “Cyclic elements of the shift operator in weighted anisotropic spaces of analytic functions in a polydisk,” in: Study of Linear Operators and Theory of Functions [in Russian], POMI RAN, St. Petersburg, 2005, 33, pp. 225–234.Google Scholar
  14. 14.
    Borichev A. A. and Hedenmalm H., “Harmonic functions of maximal growth: invertibility and cyclicity in Bergman spaces,” J. Amer. Math. Soc., 10, No. 3, 761–796 (1997).zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Rudin W., Function Theory in the Unit Ball of ℂn [Russian translation], Mir, Moscow (1984).Google Scholar
  16. 16.
    Aleksandrov A. B., “The theory of functions in a ball,” in: Contemporary Problems of Mathematics. Fundamental Trends [in Russian], VINITI, Moscow, 1985, 8, pp. 115–190 (Itogi Nauki i Tekhniki).Google Scholar
  17. 17.
    Shamoyan F. A., “Embedding theorems and characterization of traces in H p(U n), 0 < p < +∞,” Math. USSR-Sb., 35, 709–725 (1979).zbMATHCrossRefGoogle Scholar
  18. 18.
    Shamoyan F. A., “The diagonal mapping and problems of representation in anisotropic spaces of holomorphic functions in the polydisk,” Siberian Math. J., 31, No. 2, 350–365 (1990).zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Garnett J., Bounded Analytic Functions [Russian translation], Mir, Moscow (1984).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  1. 1.Bryansk State UniversityBryanskRussia

Personalised recommendations