Siberian Mathematical Journal

, 50:965 | Cite as

On finite groups isospectral to simple symplectic and orthogonal groups

  • A. V. Vasil’ev
  • M. A. Grechkoseeva
  • V. D. Mazurov


The spectrum of a finite group is the set of its element orders. Two groups are said to be isospectral if their spectra coincide. We deal with the class of finite groups isospectral to simple and orthogonal groups over a field of an arbitrary positive characteristic p. It is known that a group of this class has a unique nonabelian composition factor. We prove that this factor cannot be isomorphic to an alternating or sporadic group. We also consider the case where this factor is isomorphic to a group of Lie type over a field of the same characteristic p.


finite group spectrum of a group simple group symplectic group orthogonal group composition factor 


  1. 1.
    Mazurov V. D., “Groups with prescribed spectrum,” Izv. Ural. Gos. Univ. Mat. Mekh., 7, No. 36, 119–138 (2005).MathSciNetGoogle Scholar
  2. 2.
    Mazurov V. D., “Recognition of finite simple groups S4(q) by their element orders,” Algebra and Logic, 41, No. 2, 93–110 (2002).CrossRefMathSciNetGoogle Scholar
  3. 3.
    Mazurov V. D., Xu M. C., and Cao H. P., “Recognition of finite simple groups L 3(2m) and U 3(2m) by their element orders,” Algebra and Logic, 39, No. 5, 324–334 (2000).CrossRefMathSciNetGoogle Scholar
  4. 4.
    Mazurov V. D., “Characterization of finite groups by sets of element orders,” Algebra and Logic, 36, No. 1, 23–32 (1997).CrossRefMathSciNetGoogle Scholar
  5. 5.
    Shi W. and Tang C. Y., “A characterization of some orthogonal groups,” Progr. Nat. Sci., 7, No. 2, 155–162 (1997).MATHMathSciNetGoogle Scholar
  6. 6.
    Mazurov V. D. and Moghaddamfar A. R., “The recognition of the simple group S 8(2) by its spectrum,” Algebra Colloq., 13, No. 4, 643–646 (2006).MATHMathSciNetGoogle Scholar
  7. 7.
    Vasil’ev A. V. and Grechkoseeva M. A., “On recognition of the finite simple orthogonal groups of dimension 2m, 2m+1, and 2m + 2 over a field of characteristic 2,” Siberian Math. J., 45, No. 3, 420–432 (2004).CrossRefMathSciNetGoogle Scholar
  8. 8.
    Grechkoseeva M. A., “Recognition of the group O 10+(2) from its spectrum,” Siberian Math. J., 44, No. 4, 577–580 (2003).CrossRefMathSciNetGoogle Scholar
  9. 9.
    Alekseeva O. A. and Kondrat’ev A. S., “Recognition of the groups 2 D p(3) for an odd prime p by spectrum,” Trudy Inst. Mat. Mekh. Ural Otdel. Ross. Akad. Nauk, 14, No. 4, 3–11 (2008).Google Scholar
  10. 10.
    Kondrat’ev A. S., “Recognition by spectrum of the groups \( ^2 D_{2^m + 1} (3) \),” Sci. China Ser. A, 52, No. 2, 293–300 (2009).MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Vasil’ev A. V., Gorshkov I. B., Grechkoseeva M. A., Kondrat’ev A. S., and Staroletov A. M., “On recognition of finite simple groups of types B n, C n and 2 D n for n = 2k by spectrum,” Trudy Inst. Mat. Mekh. Ural Otdel. Ross. Akad. Nauk, 15, No. 2, 58–73 (2009).Google Scholar
  12. 12.
    Alekseeva O. A. and Kondrat’ev A. S., “On recognizability of some finite simple orthogonal groups by spectrum,” Proc. Steklov Inst. Math., 263,Suppl. 2, S10–S23 (2009).CrossRefGoogle Scholar
  13. 13.
    Unsolved Problems in Group Theory. The Kourovka Notebook. 16th ed. (Eds. Mazurov V. D. and Khukhro E. I.), Sobolev Institute of Mathematics, Novosibirsk (2006).Google Scholar
  14. 14.
    Shi W., “A new characterization of the sporadic simple groups,“ in: Group Theory, Proc. Conf., Singapore 1987, Walter de Gruyter, Berlin and New York, 1989, pp. 531–540.Google Scholar
  15. 15.
    Shi W. J. and Xu M., “Pure quantitative characterization of finite simple groups 2 D n(q) and D l(q) (l odd),” Algebra Colloq., 10, No. 3, 427–443 (2003).MATHMathSciNetGoogle Scholar
  16. 16.
    Conway J. H, Curtis R. T., Norton S. P., Parker R. A., and Wilson R. A., Atlas of Finite Groups, Clarendon Press, Oxford (1985).MATHGoogle Scholar
  17. 17.
    Zsigmondy K., “Zür Theorie der Potenzreste,” Monatsh. Math. Phys., Bd 3, 265–284 (1892).CrossRefMathSciNetGoogle Scholar
  18. 18.
    Roitman M., “On Zsigmondy primes,” Proc. Amer. Math. Soc., 125, No. 7, 1913–1919 (1997).MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Williams J. S., “Prime graph components of finite groups,” J. Algebra, 69, No. 2, 487–513 (1981).MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Kondratiev A. S., “On prime graph components for finite simple groups,” Math. USSR-Sb., 67, No. 1, 235–247 (1990).CrossRefMathSciNetGoogle Scholar
  21. 21.
    Kondrat’ev A. S. and Mazurov V. D., “Recognition of alternating groups of prime degree from their element orders,” Siberian Math. J., 41, No. 2, 294–302 (2000).CrossRefMathSciNetGoogle Scholar
  22. 22.
    Vasiliev A. V. and Vdovin E. P., “An adjacency criterion for the prime graph of a finite simple group,” Algebra and Logic, 44, No. 6, 381–406 (2005).CrossRefMathSciNetGoogle Scholar
  23. 23.
    Vasil’ev A. V. and Vdovin E. P., Cocliques of Maximal Size in the Prime Graph of a Finite Simple Group [Preprint, No. 225], Sobolev Institute of Mathematics, Novosibirsk (2009) (also see Scholar
  24. 24.
    Vasil’ev A. V., “On connection between the structure of a finite group and properties of its prime graph,” Siberian Math. J., 46, No. 3, 396–404 (2005).CrossRefMathSciNetGoogle Scholar
  25. 25.
    Vasil’ev A. V. and Gorshkov I. B., “On recognition of finite simple groups with connected prime graph,” Siberian Math. J., 50, No. 2, 233–238 (2009).CrossRefMathSciNetGoogle Scholar
  26. 26.
    Gorenstein D., Finite Groups, Harper and Row, New York etc. (1968).MATHGoogle Scholar
  27. 27.
    Aleeva M. R., “On finite simple groups with the set of element orders as in a Frobenius group or a double Frobenius group,” Math. Notes, 73, No. 3, 299–313 (2003).MATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Zavarnitsine A. V., “Finite simple groups with narrow prime spectrum,” Sibirsk. Elektron. Mat. Izv., 6, 1–12 (2009); Scholar
  29. 29.
    Vasil’ev A. V. and Grechkoseeva M. A., “Recognition by spectrum for finite simple linear groups of small dimensions over fields of characteristic 2,” Algebra and Logic, 47, No. 5, 314–320 (2008).CrossRefMathSciNetGoogle Scholar
  30. 30.
    Testerman D. M., “A 1-type overgroups of elements of order p in semisimple algebraic groups and the associated finite groups,” J. Algebra, 177, No. 1, 34–76 (1995).MATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Srinivasan B., “The characters of the finite symplectic group Sp(4, q),” Trans. Amer. Math. Soc., 131, No. 2, 488–525 (1968).MATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Carter R. W., Simple Groups of Lie Type, John Wiley and Sons, London etc. (1972) (Pure Appl. Math., a Wiley Interscience Publ.; 28).MATHGoogle Scholar
  33. 33.
    Buturlakin A. A. and Grechkoseeva M. A., “The cyclic structure of the maximal tori of classical finite groups,” Algebra and Logic, 46, No. 2, 73–89 (2007).CrossRefMathSciNetGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • A. V. Vasil’ev
    • 1
  • M. A. Grechkoseeva
    • 1
  • V. D. Mazurov
    • 1
  1. 1.Sobolev Institute of MathematicsNovosibirskRussia

Personalised recommendations