Advertisement

Siberian Mathematical Journal

, Volume 50, Issue 2, pp 316–321 | Cite as

On periodic groups with small orders of elements

  • V. D. MazurovEmail author
  • A. S. Mamontov
Article

Abstract

We prove that a finite group with the set of element orders equal to {1, 2, 3, 5, 6} is locally finite.

Keywords

periodic group locally finite group spectrum 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Novikov P. S. and Adyan S. I., “On infinite periodic groups,” Izv. Akad. Nauk SSSR Ser. Mat., 1968. I: No. 1, 212–244; II: No. 2, 251–524; III: No. 3, 709–731.Google Scholar
  2. 2.
    Lysenok I. G., “Infinite Burnside groups of even exponent,” Izv. Ross. Akad. Nauk Ser. Mat., 60, No. 1, 3–224 (1996).MathSciNetGoogle Scholar
  3. 3.
    Neumann B. H., “Groups whose elements have bounded orders,” J. London Math. Soc., 12, 195–198 (1937).zbMATHCrossRefGoogle Scholar
  4. 4.
    Sanov I. N., “Solution of Burnside’s problem for exponent 4,” Leningrad. Gos. Univ. Uchen. Zap. Ser. Mat. Nauk, No. 55, 166–170 (1940).Google Scholar
  5. 5.
    Hall M. Jr., “Solution of the Burnside problem for exponent six,” Illinois J. Math., 2, No. 3, 764–786 (1958).MathSciNetGoogle Scholar
  6. 6.
    Newman M. F., “Groups of exponent dividing seventy,” Math. Sci., 4, No. 2, 149–157 (1979).zbMATHMathSciNetGoogle Scholar
  7. 7.
    Gupta N. D. and Mazurov V. D., “On groups with small orders of elements,” Bull. Austral. Math. Soc., 60, No. 5, 197–205 (1999).zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Jabara E., “Fixed point free action of groups of exponent 5,” J. Austral. Math. Soc., 77, No. 3, 297–304 (2004).zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Mazurov V. D., “Groups of exponent 60 with prescribed orders of elements,” Algebra and Logic 189–198, 39, No. 3, 189–198 (2000).CrossRefMathSciNetGoogle Scholar
  10. 10.
    Mazurov V. D., “Weakened Burnside’s problem for exponent 30,” Algebra and Logic, 8, No. 4, 264–237 (1969).CrossRefGoogle Scholar
  11. 11.
    Hall P. and Higman G., “On the p-length of p-soluble groups and reduction theorems for Burnside’s problem,” Proc. London Math. Soc., 7, No. 1, 1–42 (1956).CrossRefMathSciNetGoogle Scholar
  12. 12.
    Isaacs I. M., Finite Group Theory, Amer. Math. Soc., Providence, RI (2008).zbMATHGoogle Scholar
  13. 13.
    Groups, algorithms and programming, Lehrstuhl D für Mathematik, RWTH Aachen, 1994. Available at http://www.gapsystem.org.
  14. 14.
    Shunkov V. P., “On periodic groups with an almost regular involution,” Algebra and Logic, 11, No. 4, 260–272 (1972).zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  1. 1.Sobolev Institute of MathematicsNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations