Advertisement

Siberian Mathematical Journal

, Volume 49, Issue 6, pp 1109–1123 | Cite as

Arithmetical D-degrees

  • S. Yu. PodzorovEmail author
Article
  • 22 Downloads

Abstract

Description is given of the isomorphism types of the principal ideals of the join semilattice of m-degrees which are generated by arithmetical sets. A result by Lachlan of 1972 on computably enumerable m-degrees is extended to the arbitrary levels of the arithmetical hierarchy. As a corollary, a characterization is given of the local isomorphism types of the Rogers semilattices of numberings of finite families, and the nontrivial Rogers semilattices of numberings which can be computed at the different levels of the arithmetical hierarchy are proved to be nonisomorphic provided that the difference between levels is more than 1.

Keywords

arithmetical hierarchy m-reducibility distributive join semilattice Lachlan semilattice numbering Rogers semilattice 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lachlan A. H., “Recursively enumerable many-one degrees,” Algebra i Logika, 11, No. 3, 326–358 (1972).MathSciNetGoogle Scholar
  2. 2.
    Podzorov S. Yu., “Enumerated distributive semilattices,” Mat. Trudy, 9, No. 2, 109–132 (2006).MathSciNetGoogle Scholar
  3. 3.
    Podzorov S. Yu., “Local structure of Rogers semilattices of Σn0-computable numberings,” Algebra and Logic, 44, No. 1, 82–94 (2005).CrossRefMathSciNetGoogle Scholar
  4. 4.
    Podzorov S. Yu., “Initial segments in Rogers semilattices of Σn0-computable numberings,” Algebra and Logic, 42, No. 2, 211–226 (2003).zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Badaev S. A., Goncharov S. S., and Sorbi A., “Isomorphism types and theories of Rogers semilattices of arithmetical numberings,” in: Computability and Models, Kluwer Plenum Publ., New York, 2003, pp. 79–91.Google Scholar
  6. 6.
    Badaev S. A., Goncharov S. S., and Sorbi A., “Isomorphism types of Rogers semilattices for families from different levels of the arithmetical hierarchy,” Algebra and Logic, 45, No. 6, 361–370 (2006).CrossRefMathSciNetGoogle Scholar
  7. 7.
    Rogers H., Theory of Recursive Functions and Effective Computability, McGraw-Hill Book Comp., New York; St. Louis; San Francisco; Toronto; London; Sydney (1967).zbMATHGoogle Scholar
  8. 8.
    Grätzer G., General Lattice Theory, Birkhäuser, Basel (1978).Google Scholar
  9. 9.
    Ershov Yu. L., Theory of Numberings [in Russian], Nauka, Moscow (1977).Google Scholar
  10. 10.
    Denisov S. D., “The structure of upper semilattices of recursively enumerable m-degrees and related issues. I,” Algebra and Logic, 17, No. 6, 643–683 (1978).zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Podzorov S. Yu., “The universal Lachlan semilattice without the greatest element,” Algebra and Logic, 46, No. 3, 299–345 (2007).CrossRefMathSciNetGoogle Scholar
  12. 12.
    Ershov Yu. L., “Rogers semilattices of finite partially ordered sets,” Algebra and Logic, 45, No. 1, 44–84 (2006).zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Badaev S., Goncharov S., and Sorbi A., “Completeness and universality of arithmetical numberings,” in: Computability and Models, Kluwer Plenum Publ., New York, 2003, pp. 11–44.Google Scholar
  14. 14.
    Badaev S. A., Goncharov S. S., Podzorov S. Yu., and Sorbi A., “Algebraic properties of Rogers semilattices of arithmetical numberings,” in: Computability and Models, 2003, Kluwer Plenum Publ., New York, pp. 45–78.Google Scholar
  15. 15.
    Goncharov S. S., Countable Boolean Algebras and Decidability [in Russian], Nauchnaya Kniga, Novosibirsk (1996).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  1. 1.Sobolev Institute of MathematicsNovosibirskRussia

Personalised recommendations