Siberian Mathematical Journal

, Volume 49, Issue 5, pp 835–841 | Cite as

On the theory of grossone

  • A. E. GutmanEmail author
  • S. S. Kutateladze


A trivial formalization is given for the informal reasonings of a series of papers by Ya. D. Sergeyev on a positional numeral system with an infinitely large base, grossone; the system which is groundlessly opposed by its originator to the classical nonstandard analysis.


nonstandard analysis infinitesimal analysis positional numeral system 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sergeyev Ya. D., Arithmetic of Infinity, Edizioni Orizzonti Meridionali, Cosenza (2003).Google Scholar
  2. 2.
    Sergeyev Ya. D., “A few remarks on philosophical foundations of a new applied approach to Infinity,” Scheria, 26–27, 63–72 (2005).Google Scholar
  3. 3.
    Sergeyev Ya. D., “Misuriamo l’infinito: Un semplice modo per insegnare i concetti delle grandezze infinite,” Period. Mat., 6(2), 11–26 (2006).Google Scholar
  4. 4.
    Sergeyev Ya. D., “Blinking fractals and their quantitative analysis using infinite and infinitesimal numbers,” Chaos Solitons Franctals, 33(1), 50–75 (2007).CrossRefGoogle Scholar
  5. 5.
    Sergeyev Ya. D., Infinity Computer. Computer System for Storing Infinite, Infinitesimal, and Finite Quantities and Executing Arithmetical Operations with Them, International Patent Application, Submitted 08.03.04.Google Scholar
  6. 6.
    Nelson E., “Internal set theory. A new approach to nonstandard analysis,” Bull. Amer. Math. Soc., 83, No. 6, 1165–1198 (1977).zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Hrbaček K., “Axiomatic foundations for nonstandard analysis,” Fund. Math., 98, No. 1, 1–24 (1978).zbMATHMathSciNetGoogle Scholar
  8. 8.
    Kawai T., “Axiom systems of nonstandard set theory,” in: Logic Symposia, Proc. Conf. Hakone 1979, 1980, Springer-Verlag, Berlin etc., 1981, pp. 57–65.CrossRefGoogle Scholar
  9. 9.
    Kanovei V. and Reeken M., Nonstandard Analysis, Axiomatically, Springer-Verlag, Berlin (2004) (Springer Monogr. in Math.).zbMATHGoogle Scholar
  10. 10.
    Gordon E. I., Kusraev A. G., and Kutateladze S. S., Infinitesimal Analysis. Selected Topics [in Russian], Nauka, Moscow (2008).Google Scholar
  11. 11.
    Wilkie A. J., “Model completeness results for expansions of the ordered field of real numbers by restricted Pfaffian functions and the exponential function,” J. Amer. Math. Soc., 9, No. 4, 1051–1094 (1996).zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    van den Dries L., Tame Topology and o-Minimal Structures, Cambridge University Press, Cambridge (1998) (London Math. Soc. Lecture Notes Series; 248).Google Scholar
  13. 13.
    Macintyre A. and Wilkie A. J., “On the decidability of the real exponential field,” in: Kreiseliana: About and Around Georg Kreisel, A K Peters, Wellesley, MA, 1996, pp. 441–467.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  1. 1.Sobolev Institute of MathematicsNovosibirskRussia

Personalised recommendations